MHB Piecewise-defined Function....1

  • Thread starter Thread starter mathdad
  • Start date Start date
AI Thread Summary
A piecewise-defined function consists of different expressions based on the input value of x, as demonstrated by the function y(x) = {x^3 for x ≤ 0, |x| for x > 0}. To find the x-intercept, set y = 0 and solve for x, which yields x = 0 in this case. The y-intercept is also found at the origin, where y(0) = 0. The absolute value function is only applicable for positive x values, confirming that the only intercept for this piecewise function is at the origin. Understanding piecewise functions involves recognizing how different rules apply to different intervals of x.
mathdad
Messages
1,280
Reaction score
0
Can someone explain what exactly is a piecewise-defined function? How do we find the x and y intercepts of a piecewise-defined function?

y = x^3 if x is < or = 0...this is the upper piece

y = | x | if x > 0...this is the bottom piece
 
Mathematics news on Phys.org
RTCNTC said:
Can someone explain what exactly is a piecewise-defined function? How do we find the x and y intercepts of a piecewise-defined function?

y = x^3 if x is < or = 0...this is the upper piece

y = | x | if x > 0...this is the bottom piece

The given function is:

$$y(x)=\begin{cases}x^3, & x\le0 \\[3pt] |x|, & 0<x \\ \end{cases}$$

This tells us that on the interval $(-\infty,0]$, we have:

$$y(x)=x^3$$

And on the interval $(0,\infty)$, we have:

$$y(x)=|x|$$

Finding the intercepts is done the same way as for "ordinary" functions. To find the $x$-intercept(s), we set $y=0$ and solve for $x$, and to find the $y$-intercepts we take the point $(0,y(0))$. What are the intercepts for the given piecewise-defined function?
 
y = {x}^{3}, when x = 0, y = 0.

0 = {x}^{3}, we take the cube root on both sides and get x = 0 and y = 0.

y = |0|, when x = 0, y = 0.

For 0 = |x|, do I square both sides?
 
RTCNTC said:
y = {x}^{3}, when x = 0, y = 0.

0 = {x}^{3}, we take the cube root on both sides and get x = 0 and y = 0.

y = |0|, when x = 0, y = 0.

For 0 = |x|, do I square both sides?

We see that by the definition of the function, when $x=0$, then we have only $y(0)=0^3=0$. The absolute value piece is only defined for $0<x$. So, the $y$ intercept is at the origin, and this is the only place where $y=0$, and so the only intercept is at the origin. :D
 
I am going to post a few more similar questions. I am not too clear in terms of y = |x|.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top