Poisson Ratio -- Finding a corresponding analytical solution for the strain

Click For Summary
SUMMARY

The forum discussion centers on the application of the Poisson ratio in a finite element (FE) simulation involving a 2D block with specified displacements and constraints. The material parameters include Young's modulus (E) of 100 and a Poisson ratio (v) of 0.3. The user encountered discrepancies between the expected analytical solution for strain_xx and the simulation results, leading to a discussion on the correct application of strain-stress relations under plane strain conditions. The correct analytical relationship for strain_xx is derived as ε_x = -v/(1-v) * ε_y, confirming the simulation's output of 0.04285714.

PREREQUISITES
  • Understanding of finite element analysis (FEA) principles
  • Familiarity with material mechanics, specifically strain and stress relations
  • Knowledge of plane strain and plane stress conditions
  • Proficiency in mathematical derivations involving Young's modulus and Poisson's ratio
NEXT STEPS
  • Study the derivation of strain-stress relations in plane strain scenarios
  • Learn about the differences between plane strain and plane stress conditions
  • Explore the implications of Poisson's ratio in different material models
  • Investigate advanced finite element software capabilities for strain analysis
USEFUL FOR

Engineers, researchers, and students in the fields of mechanical engineering, materials science, and structural analysis who are working with finite element simulations and require a deeper understanding of strain-stress relationships.

Br--1995
Messages
3
Reaction score
0
TL;DR
Find a corresponding analytical solution for the strain in the x-direction caused by the poisson ratio.
Hi, I ran into problems using the poisson ratio.
For a FE simulation I created a simple 2D 1mm x 1mm block, and prescribed a 0.1 mm displacement at the top edge.
Furthermore, the bottom edge is constraint in the y-dir, and the left edge in the x-dir.
The material parameters are E = 100, and v (poisson ratio) = 0.3.
Note the simulation is executed for a plane strain assumption!

To verify the results I would like to solve the analytical solution for this problem.
This is quite simple tbh, I use the 2D strain-stress relations for the plane strain problem.
However, the simulation shows that the strain_yy = -0.1 (as expected) but the strain_xx = 0.04285714.

I really cannot figure out the analytical solution for the strain_xx, I would expect this to be 0.03 (strain_xx = -v * strain_yy).

I know that the 0.0428.. value should be the correct one, because I tried the simulation in different simulation software.
Hopefully someone can explain me how to get this value analytically?

Thanks in advance!

Situation_sketch.PNG Displacement_x.PNG Strain_xx.PNG
 
Last edited by a moderator:
Engineering news on Phys.org
Just by looking at the numbers: strain_xx = -v * strain_yy / (1-v) = 0.0485714...
 
  • Like
Likes   Reactions: Br--1995
In the plain strain situation, the strain in the 3rd direction is zero. This results in a larger strain in the transverse direction. Try the calculation with plain stress and see what you get. For plain strain, you get $$\epsilon_y=-\frac{\nu}{(1-\nu)}\epsilon_x=-0.04286$$
 
Last edited:
  • Like
Likes   Reactions: Br--1995
Chestermiller said:
In the plain strain situation, the strain in the 3rd direction is zero. This results in a larger strain in the transverse direction. Try the calculation with plain stress and see what you get. For plain strain, you get $$\epsilon_y=-\frac{\nu}{(1-\nu)}\epsilon_x=-0.04286$$
Thank you very much for your answer, that's the relation I was looking for. (Note, there is a small typo: $$\epsilon_x$$ and $$\epsilon_y$$ should be the other way around)

To make the story complete, I expect this relation is derived by:
$$\sigma_x = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu) \epsilon_x + \nu \epsilon_y]$$

Because the block is not constraint in the right x-dir, it can expand freely -> conclusion: $$\sigma_x = 0$$
Therefore, we can write the previous eq. for the strain in the x-dir as :
$$\epsilon_x = -\frac{\nu}{1-\nu} \epsilon_y $$

Correct me if I am wrong.
 
Br--1995 said:
Thank you very much for your answer, that's the relation I was looking for. (Note, there is a small typo: $$\epsilon_x$$ and $$\epsilon_y$$ should be the other way around)

To make the story complete, I expect this relation is derived by:
$$\sigma_x = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu) \epsilon_x + \nu \epsilon_y]$$

Because the block is not constraint in the right x-dir, it can expand freely -> conclusion: $$\sigma_x = 0$$
Therefore, we can write the previous eq. for the strain in the x-dir as :
$$\epsilon_x = -\frac{\nu}{1-\nu} \epsilon_y $$

Correct me if I am wrong.
That's not exactly the way I did it, but it is correct. I hope you also noticed that ##\sigma_y## is not equal to ##E\epsilon_y##, but rather $$\frac{E\epsilon_y}{(1-\nu^2)}$$
 
  • Like
Likes   Reactions: Br--1995
Chestermiller said:
That's not exactly the way I did it, but it is correct. I hope you also noticed that ##\sigma_y## is not equal to ##E\epsilon_y##, but rather $$\frac{E\epsilon_y}{(1-\nu^2)}$$
Thank you for your help! Yes I've noticed this.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
8K
Replies
6
Views
14K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
39
Views
7K
Replies
3
Views
13K