MHB Polynomial Challenge: Show $f(5y^2)=P(y)Q(y)$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that $f(x)=x^4+x^3+x^2+x+1$. Show that there exist polynomials $P(y)$ and $Q(y)$ of positive degrees, with integer coefficients, such that $f(5y^2)=P(y)\cdot Q(y)$ for all $y$.
 
Mathematics news on Phys.org
My solution:

We find that:

$$f\left(5y^2\right)=625y^8+125y^6+25y^4+5y^2+1$$

Let us assume then that this can be factored into two quartics as follows:

$$625y^8+125y^6+25y^4+5y^2+1=\left(25y^4+ay^3+by^2+cy+1\right)\left(25y^4-ay^3+by^2-cy+1\right)$$

Let us further assume that all of $a,b,c$ are positive.

Expansion of the right side yields:

$$625y^8+125y^6+25y^4+5y^2+1=625y^8+\left(50b-a^2\right)y^6+\left(b^2-2ac+50\right)y^4+\left(2b-c^2\right)y^2+1$$

Equating coefficients gives the non-linear system:

$$50b-a^2=125$$

$$2ac-b^2=25$$

$$2b-c^2=5$$

The first and third give:

$$2b=5+\left(\frac{a}{5}\right)^2=5+c^2\implies a=5c$$

Substituting into the second equation, we obtain:

$$10c^2-b^2=25$$

Multiplying the 3rd equation by 10, we find:

$$20b-10c^2=50$$

Adding the last two results, we eliminate $c$ to obtain:

$$-b^2+20b=75$$

$$b^2-20b+75=0$$

$$(b-5)(b-15)=0$$

We then find that only the root $b=15$ allows $a$ and $c$ to be integers:

$$a=25,\,c=5$$

Hence:

$$f\left(5y^2\right)=\left(25y^4+25y^3+15y^2+5y+1\right)\left(25y^4-25y^3+15y^2-5y+1\right)$$
 
MarkFL said:
My solution:

We find that:

$$f\left(5y^2\right)=625y^8+125y^6+25y^4+5y^2+1$$

Let us assume then that this can be factored into two quartics as follows:

$$625y^8+125y^6+25y^4+5y^2+1=\left(25y^4+ay^3+by^2+cy+1\right)\left(25y^4-ay^3+by^2-cy+1\right)$$

Let us further assume that all of $a,b,c$ are positive.

Expansion of the right side yields:

$$625y^8+125y^6+25y^4+5y^2+1=625y^8+\left(50b-a^2\right)y^6+\left(b^2-2ac+50\right)y^4+\left(2b-c^2\right)y^2+1$$

Equating coefficients gives the non-linear system:

$$50b-a^2=125$$

$$2ac-b^2=25$$

$$2b-c^2=5$$

The first and third give:

$$2b=5+\left(\frac{a}{5}\right)^2=5+c^2\implies a=5c$$

Substituting into the second equation, we obtain:

$$10c^2-b^2=25$$

Multiplying the 3rd equation by 10, we find:

$$20b-10c^2=50$$

Adding the last two results, we eliminate $c$ to obtain:

$$-b^2+20b=75$$

$$b^2-20b+75=0$$

$$(b-5)(b-15)=0$$

We then find that only the root $b=15$ allows $a$ and $c$ to be integers:

$$a=25,\,c=5$$

Hence:

$$f\left(5y^2\right)=\left(25y^4+25y^3+15y^2+5y+1\right)\left(25y^4-25y^3+15y^2-5y+1\right)$$

Good job, MarkFL! And thanks for participating!:)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top