MHB Polynomial challenge: Show that not all the coefficients of f(x) are integers.

AI Thread Summary
The discussion centers on a degree 10 polynomial $f(x)$ with integer values $p$, $q$, and $r$ such that $f(p)=q$, $f(q)=r$, and $f(r)=p$. Participants analyze the implications of assuming all coefficients of $f(x)$ are integers. A key point raised is a correction regarding divisibility, specifically that $r-p$ should divide $p-q$. The conclusion drawn is that not all coefficients of $f(x)$ can be integers, as demonstrated through the relationships between $p$, $q$, and $r$. The thread emphasizes the complexity of polynomial behavior under integer constraints.
castor28
Gold Member
MHB
Messages
255
Reaction score
0
$f(x)$ is a degree 10 polynomial such that $f(p)=q$, $f(q)=r$, $f(r)=p$, where $p$, $q$, $r$ are integers with $p<q<r$.

Show that not all the coefficients of $f(x)$ are integers.
 
Mathematics news on Phys.org
castor28 said:
$f(x)$ is a degree 10 polynomial such that $f(p)=q$, $f(q)=r$, $f(r)=p$, where $p$, $q$, $r$ are integers with $p<q<r$.

Show that not all the coefficients of $f(x)$ are integers.

Let all coefficients be integers
we have m-n divides $f(m)-f(n)$
so p- q | f(p) - f(q) | q-r

similarly
q -r | r-p
and r-p | p - q

from above as p - q | q-r | r- p | p- q (all nteger multiples) so all are same and hence a contradiction

so all coefficients cannot be integers
 
Last edited:
kaliprasad said:
Let all coefficients be integers
we have m-n divides $f(m)-f(n)$
so p- q | f(p) - f(q) | q-r

similarly
q -r | r-p
and r-q | p - q

from above as p - q | q-r | r- p | p- q (all nteger multiples) so all are same and hence a contradiction

so all coefficients cannot be integers
That is quite correct (except for a small typo: $r-q\mid p-q$ should be $r-p\mid p-q$).
Congratulations!:)
 
castor28 said:
That is quite correct (except for a small typo: $r-q\mid p-q$ should be $r-p\mid p-q$).
Congratulations!:)

Thanks castor. Corrected the same inline for the flow.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top