MHB Polynomial challenge: Show that not all the coefficients of f(x) are integers.

Click For Summary
The discussion centers on a degree 10 polynomial $f(x)$ with integer values $p$, $q$, and $r$ such that $f(p)=q$, $f(q)=r$, and $f(r)=p$. Participants analyze the implications of assuming all coefficients of $f(x)$ are integers. A key point raised is a correction regarding divisibility, specifically that $r-p$ should divide $p-q$. The conclusion drawn is that not all coefficients of $f(x)$ can be integers, as demonstrated through the relationships between $p$, $q$, and $r$. The thread emphasizes the complexity of polynomial behavior under integer constraints.
castor28
Gold Member
MHB
Messages
255
Reaction score
0
$f(x)$ is a degree 10 polynomial such that $f(p)=q$, $f(q)=r$, $f(r)=p$, where $p$, $q$, $r$ are integers with $p<q<r$.

Show that not all the coefficients of $f(x)$ are integers.
 
Mathematics news on Phys.org
castor28 said:
$f(x)$ is a degree 10 polynomial such that $f(p)=q$, $f(q)=r$, $f(r)=p$, where $p$, $q$, $r$ are integers with $p<q<r$.

Show that not all the coefficients of $f(x)$ are integers.

Let all coefficients be integers
we have m-n divides $f(m)-f(n)$
so p- q | f(p) - f(q) | q-r

similarly
q -r | r-p
and r-p | p - q

from above as p - q | q-r | r- p | p- q (all nteger multiples) so all are same and hence a contradiction

so all coefficients cannot be integers
 
Last edited:
kaliprasad said:
Let all coefficients be integers
we have m-n divides $f(m)-f(n)$
so p- q | f(p) - f(q) | q-r

similarly
q -r | r-p
and r-q | p - q

from above as p - q | q-r | r- p | p- q (all nteger multiples) so all are same and hence a contradiction

so all coefficients cannot be integers
That is quite correct (except for a small typo: $r-q\mid p-q$ should be $r-p\mid p-q$).
Congratulations!:)
 
castor28 said:
That is quite correct (except for a small typo: $r-q\mid p-q$ should be $r-p\mid p-q$).
Congratulations!:)

Thanks castor. Corrected the same inline for the flow.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...