MHB Polynomial challenge: Show that not all the coefficients of f(x) are integers.

AI Thread Summary
The discussion centers on a degree 10 polynomial $f(x)$ with integer values $p$, $q$, and $r$ such that $f(p)=q$, $f(q)=r$, and $f(r)=p$. Participants analyze the implications of assuming all coefficients of $f(x)$ are integers. A key point raised is a correction regarding divisibility, specifically that $r-p$ should divide $p-q$. The conclusion drawn is that not all coefficients of $f(x)$ can be integers, as demonstrated through the relationships between $p$, $q$, and $r$. The thread emphasizes the complexity of polynomial behavior under integer constraints.
castor28
Gold Member
MHB
Messages
255
Reaction score
0
$f(x)$ is a degree 10 polynomial such that $f(p)=q$, $f(q)=r$, $f(r)=p$, where $p$, $q$, $r$ are integers with $p<q<r$.

Show that not all the coefficients of $f(x)$ are integers.
 
Mathematics news on Phys.org
castor28 said:
$f(x)$ is a degree 10 polynomial such that $f(p)=q$, $f(q)=r$, $f(r)=p$, where $p$, $q$, $r$ are integers with $p<q<r$.

Show that not all the coefficients of $f(x)$ are integers.

Let all coefficients be integers
we have m-n divides $f(m)-f(n)$
so p- q | f(p) - f(q) | q-r

similarly
q -r | r-p
and r-p | p - q

from above as p - q | q-r | r- p | p- q (all nteger multiples) so all are same and hence a contradiction

so all coefficients cannot be integers
 
Last edited:
kaliprasad said:
Let all coefficients be integers
we have m-n divides $f(m)-f(n)$
so p- q | f(p) - f(q) | q-r

similarly
q -r | r-p
and r-q | p - q

from above as p - q | q-r | r- p | p- q (all nteger multiples) so all are same and hence a contradiction

so all coefficients cannot be integers
That is quite correct (except for a small typo: $r-q\mid p-q$ should be $r-p\mid p-q$).
Congratulations!:)
 
castor28 said:
That is quite correct (except for a small typo: $r-q\mid p-q$ should be $r-p\mid p-q$).
Congratulations!:)

Thanks castor. Corrected the same inline for the flow.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top