Polynomial Challenge V: Real Solution Implies $p^2+q^2\ge 8$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Polynomial
Click For Summary

Discussion Overview

The discussion centers around the polynomial equation $x^4+px^3+2x^2+qx+1$ and the condition that if it has a real solution, then it must hold that $p^2+q^2\ge 8$. Participants explore various approaches to demonstrate this relationship, involving algebraic manipulations and inequalities.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose dividing the polynomial by $x^2$ and substituting $y = x + x^{-1}$ to reformulate the problem.
  • Others argue that applying the Cauchy–Schwarz inequality leads to a quadratic expression whose discriminant must be non-negative for real solutions to exist.
  • A participant notes that if $p^2 + q^2 < 8$, the discriminant becomes negative, indicating no real solutions for $y$ and consequently for $x$.
  • Another participant expresses appreciation for the approach taken by a contributor, highlighting the clarity of the method used to arrive at the conclusion.
  • A later reply mentions an alternative solution seen online, suggesting that multiple methods may exist to address the problem.

Areas of Agreement / Disagreement

Participants generally agree on the method of using algebraic manipulation and inequalities to analyze the problem, but there is no consensus on a singular approach or resolution of the problem itself.

Contextual Notes

Some limitations include the dependence on the assumptions made during the algebraic manipulations and the potential for multiple interpretations of the conditions under which real solutions exist.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that if $x^4+px^3+2x^2+qx+1$ has a real solution, then $p^2+q^2\ge 8$.
 
Mathematics news on Phys.org
anemone said:
Show that if $x^4+px^3+2x^2+qx+1 = 0$ has a real solution, then $p^2+q^2\ge 8$.
[sp]Divide through by $x^2$: $(x+x^{-1})^2 + px+qx^{-1} = 0$. Now let $y = x+x^{-1}$, so that the equation becomes $y^2 = -(px+qx^{-1}).$

By the Cauchy–Schwarz inequality, $(px+qx^{-1})^2 \leqslant (p^2+q^2)(x^2+x^{-2}) = (p^2+q^2)(y^2 - 2).$ If $y^2 = -(px+qx^{-1})$, then $y^4 = (px+qx^{-1})^2 \leqslant (p^2+q^2)(y^2 - 2)$, so that $y^4 - (p^2+q^2)y^2 + 2(p^2+q^2) \leqslant0$. The discriminant of that quadratic expression in $y^2$ is $(p^2+q^2)^2 - 8(p^2+q^2) = (p^2+q^2)(p^2+q^2-8).$ If $p^2+q^2<8$, the discriminant is negative and so the quadratic expression will have no real zeros. There would then be no real solutions for $y$ and therefore no real solutions for $x$.[/sp]
 
Opalg said:
[sp]Divide through by $x^2$: $(x+x^{-1})^2 + px+qx^{-1} = 0$. Now let $y = x+x^{-1}$, so that the equation becomes $y^2 = -(px+qx^{-1}).$

By the Cauchy–Schwarz inequality, $(px+qx^{-1})^2 \leqslant (p^2+q^2)(x^2+x^{-2}) = (p^2+q^2)(y^2 - 2).$ If $y^2 = -(px+qx^{-1})$, then $y^4 = (px+qx^{-1})^2 \leqslant (p^2+q^2)(y^2 - 2)$, so that $y^4 - (p^2+q^2)y^2 + 2(p^2+q^2) \leqslant0$. The discriminant of that quadratic expression in $y^2$ is $(p^2+q^2)^2 - 8(p^2+q^2) = (p^2+q^2)(p^2+q^2-8).$ If $p^2+q^2<8$, the discriminant is negative and so the quadratic expression will have no real zeros. There would then be no real solutions for $y$ and therefore no real solutions for $x$.[/sp]

you need to show that y does not lie between -2 and 2 ( or $y^2 \ge 4 $) else x becomes complex)
 
kaliprasad said:
you need to show that y does not lie between -2 and 2 ( or $y^2 \ge 4 $) else x becomes complex)
[sp]I was expecting to have to do that. But when I came to write out the solution, I saw that if $p^2+q^2<8$ then there is no real solution for $y$ (never mind whether it lies between $-2$ and $2$ or not), and therefore no real solution for $x$.[/sp]
 
Opalg said:
[sp]Divide through by $x^2$: $(x+x^{-1})^2 + px+qx^{-1} = 0$. Now let $y = x+x^{-1}$, so that the equation becomes $y^2 = -(px+qx^{-1}).$

By the Cauchy–Schwarz inequality, $(px+qx^{-1})^2 \leqslant (p^2+q^2)(x^2+x^{-2}) = (p^2+q^2)(y^2 - 2).$ If $y^2 = -(px+qx^{-1})$, then $y^4 = (px+qx^{-1})^2 \leqslant (p^2+q^2)(y^2 - 2)$, so that $y^4 - (p^2+q^2)y^2 + 2(p^2+q^2) \leqslant0$. The discriminant of that quadratic expression in $y^2$ is $(p^2+q^2)^2 - 8(p^2+q^2) = (p^2+q^2)(p^2+q^2-8).$ If $p^2+q^2<8$, the discriminant is negative and so the quadratic expression will have no real zeros. There would then be no real solutions for $y$ and therefore no real solutions for $x$.[/sp]
Well done, Opalg! It never occurred to be to approach this problem using your method! Thank you Opalg for your neat and easy-to-follow solution and thanks for participating as well.

A solution that I saw online somewhere:

Note that the degree of the polynomial is even, if there exists one real root, then there must exist either two roots of multiplicity one or one root of multiplicity two. Therefore we may write:

$x^4+px^3+2x^2+qx+1=(x^2+ax\pm1)(x^2+bx\pm1)$ for some real $a,\,b$.

We now split the problem into two cases:

Case I: $x^4+px^3+2x^2+qx+1=(x^2+ax+1)(x^2+bx+1)$

The coefficient of $x^2$ from the RHS equals to $2+ab$, setting this equals to 2 gives $ab=0$. WLOG, let $a=0$, then the factorization boils down to $(x^2+1)(x^2+bx+1)$. Since $x^2+1$ has no real rots, $x^2+bx+1$ must have one, so $b^2\ge 4$. Finally, expanding out the RHS and comparing coefficients gives $p=q=b$, so $p^2+q^2=2b^2\ge2(4)=8$, as desired.

Case II: $x^4+px^3+2x^2+qx+1=(x^2+ax-1)(x^2+bx-1)$

The coefficient of $x^2$ from the RHS equals to $-2+ab$, setting this equals to 2 gives $ab=4$. WLOG, let $p=a+b$, and $p=-(a+b)$. This means that $p^2+q^2=2(a+b)^2=2(a^2+b^2)+4ab=2(a^2+b^2)+16$ and since $a^2+b^2\ge 0$, the entire expression is $\ge 16$, which obviously makes the expression greater than 8, as desired.

Finally, note that when both $x^2$ coefficients are negated, the only aspect of the problem that differs is the sign of the $ax$ and $bx$ coefficients. Running through the steps shown above, it can be seen that this does not affect the value of $p^2+q^2$.

Hence all cases are covered, and so we're done.
 

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K