Polynomial long division by Ruffini's synthetic method

Click For Summary
Ruffini's synthetic method is a faster alternative to traditional long division for dividing polynomials by linear divisors. It is particularly effective for single degree divisors, making it a preferred choice for many students and professionals. Despite its efficiency, the method's limitation to single degree divisors is noted as a drawback. The discussion highlights appreciation for the method while also questioning the time investment required to understand such procedures. Overall, Ruffini's synthetic division is valued for its speed and simplicity in polynomial division.
Curious3141
Homework Helper
Messages
2,861
Reaction score
89
Mathematics news on Phys.org
I love this method - I always use it when I can (thanks for posting). It is really unfortunate that it only works for single degree divisors, though.

Procedures like this make me wonder who has the time to figure them out, although I appreciate their work!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
25K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 2 ·
Replies
2
Views
10K