MHB Polynomial of Degree 98: Value of $p(100)$

juantheron
Messages
243
Reaction score
1
If $p(x)$ be a polynomial of degree $98$ such that $\displaystyle p(x) = \frac{1}{x}$ for $x=1,2,3,...,98$

Then value of $p(100)=$
 
Mathematics news on Phys.org
jacks said:
If $p(x)$ be a polynomial of degree $98$ such that $\displaystyle p(x) = \frac{1}{x}$ for $x=1,2,3,...,98$

Then value of $p(100)=$

Is there no other condition?

The polynomial \(p(x)\) being of degree 98 has 99 degrees of freedom, there are 98 constraints which leaves a degree of freedom. Now if we knew that it was a monic polynomial we could answer:

\(p(100)=99!\)

(that is assuming I have the algebra right, the method is related to Opalg's approach)

CB
 
Last edited:
I wonder whether this problem should be:
If $p(x)$ be a polynomial of degree $98$ such that $\displaystyle p(x) = \frac{1}{x}$ for $x=1,2,3,...,\color{red}{99}$

Then value of $p(100)=$
In that case, let $q(x) = xp(x)-1$. Then $q(x)$ is a polynomial of degree 99, and $q(x)=0$ for $x=1,2,3,\ldots,99$. By the factor theorem, $q(x) = k(x-1)(x-2)\cdots(x-99)$ for some constant $k$. Also, $q(0)=-1$, and therefore $k=1/99!$. It follows that $q(100) = 1$, from which $p(100) = 1/50$.
 
Sorry caption and opalg i have missed that
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top