MHB Polynomial Rings - Z[x]/(x^2) and Z[x^2 + 1>

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Polynomial Rings
Click For Summary
The discussion focuses on understanding the structures of the polynomial rings Z[x]/<x^2> and Z[x]/<x^2 + 1>. Participants explore how to represent elements in these rings, particularly noting that Z[x] is not a Euclidean domain, complicating the use of the Division Algorithm. The equivalence classes in Z[x]/<x^2> can be expressed as {ax + b + <x^2> | a, b ∈ Z}, while a similar structure is proposed for Z[x]/<x^2 + 1>. The conversation also highlights the differences in operations between these rings, especially in how multiplication is handled. Overall, the thread emphasizes the need for rigorous demonstration of these structures despite the lack of a Division Algorithm in Z[x].
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am trying to get a good understanding of the structure of the rings \mathbb{Z}[x]/&lt;x^2&gt; and \mathbb{Z}[x]/&lt;x^2 +1&gt;.

I tried to first deal with the rings \mathbb{R}[x]/&lt;x^2&gt; and \mathbb{R}[x]/&lt;x^2 +1&gt; as they seemed easier to deal with ... my thinking ... and my problems are as follows: (Would really appreciate clarification)Following an example I found in Gallian (page 257), first consider \mathbb{R}[x]/&lt;x^2&gt; where \mathbb{R}[x] is the ring of polynomials with real co-efficients.

Then \mathbb{R}[x]/&lt;x^2&gt; = \{ g(x) + &lt;x^2&gt; | g(x) \in \mathbb{R}[x] \}

But \mathbb{R}[x] is a Euclidean Domain and hence possesses a Division Algorithm, so we may write:

g(x) = q(x)(x^2) + r(x) where r(x) = 0 or r(x) has degree less than 2.

so we can write r(x) = ax + b where a, b \in \mathbb{R}

Thus g(x) + &lt;x^2&gt; = q(x)(x^2) + r(x) + &lt;x^2&gt;

= r(x) + &lt;x^2&gt; since the ideal &lt;x^2&gt; absorbs the term q(x)(x^2) + r(x)

= ax + b + &lt;x^2&gt;

Thus \mathbb{R}[x]/&lt;x^2&gt; = \{ ax + b + &lt;x^2&gt; | a, b \in \mathbb{R} \}

Now, by a similar argument we can demonstrate that

\mathbb{R}[x]/&lt;x^2 +1&gt; = \{ ax + b + &lt;x^2 + 1&gt; | a, b \in \mathbb{R} \}

which makes the two rings \mathbb{R}[x]/&lt;x^2&gt; and \mathbb{R}[x]/&lt;x^2 +1&gt; look to have the same structure?

One of my questions is how exactly are these two ring structures different?

A second worry is that the above demonstration works because \mathbb{R}[x] is a Euclidean Domain ... so the same argument as above does not apply to

\mathbb{Z}[x] because \mathbb{Z}[x] is not a Euclidean Domain and hence we cannot use the Division algorithm.

How do we rigorously demonstrate that

\mathbb{Z}[x]/&lt;x^2&gt; = \{ ax + b + &lt;x^2&gt; | a, b \in \mathbb{Z} \} and\mathbb{Z}[x]/&lt;x^2 +1&gt; = \{ ax + b + &lt;x^2 + 1&gt; | a, b \in \mathbb{Z} \}

Can someone please help clarify the above problems and issues?

Peter
 
Physics news on Phys.org
Peter said:
which makes the two rings \mathbb{R}[x]/&lt;x^2&gt; and \mathbb{R}[x]/&lt;x^2 +1&gt; look to have the same structure?

One of my questions is how exactly are these two ring structures different?

The operations are not the same. For example, in $\mathbb{R}/<x^2>$ the product is is $[ax+b][a'x+b']=[cx+d]$ where $cx+d$ is the remainder of the eucldean division $(ax+b)(a'x+b'):x^2$ and in $\mathbb{R}/<x^2+1>$ the remainder of the eucldean division $(ax+b)(a'x+b'):(x^2+1)$. By the way, $\mathbb{R}/<x^2+1>$ is naturally isomorphic to $\mathbb{C}$.

How do we rigorously demonstrate that
\mathbb{Z}[x]/&lt;x^2&gt; = \{ ax + b + &lt;x^2&gt; | a, b \in \mathbb{Z} \} and
\mathbb{Z}[x]/&lt;x^2 +1&gt; = \{ ax + b + &lt;x^2 + 1&gt; | a, b \in \mathbb{Z} \}

Try $p(x)\sim q(x)$ iff there exists $h(x)\in\mathbb{Z}[x]$ such that $p(x)-q(x)=h(x)x^2$ (or $p(x)-q(x)=h(x)(x^2+1)$.
 
Last edited:
Fernando Revilla said:
The operations are not the same. For example, in $\mathbb{Z}/<x^2>$ the product is is $[ax+b][a'x+b']=[cx+d]$ where $cx+d$ is the remainder of the eucldean division $(ax+b)(a'x+b'):x^2$ and in $\mathbb{Z}/<x^2+1>$ the remainder of the eucldean division $(ax+b)(a'x+b'):(x^2+1)$. By the way, $\mathbb{Z}/<x^2+1>$ is naturally isomorphic to $\mathbb{C}$.



Try $p(x)\sim q(x)$ iff there exists $h(x)\in\mathbb{Z}[x]$ such that $p(x)-q(x)=h(x)x^2$ (or $p(x)-q(x)=h(x)(x^2+1)$.

Thanks Fernando, most helpful.You write:

"in $\mathbb{Z}/<x^2>$ the product is is $[ax+b][a'x+b']=[cx+d]$ where $cx+d$ is the remainder of the eucldean division $(ax+b)(a'x+b'):x^2$ and in $\mathbb{Z}/<x^2+1>$ the remainder of the eucldean division$$ (ax+b)(a'x+b') x^2+1)$$How can we carry out Euclidean Divisions in $$ \mathbb{Z}[x]$$ when it is not a Euclidean Domain?

Can you clarify? Am i misunderstanding something? :(

Peter
 
Peter said:
Thanks Fernando, most helpful.You write:

"in $\mathbb{Z}/<x^2>$ the product is is $[ax+b][a'x+b']=[cx+d]$ where $cx+d$ is the remainder of the eucldean division $(ax+b)(a'x+b'):x^2$ and in $\mathbb{Z}/<x^2+1>$ the remainder of the eucldean division$$ (ax+b)(a'x+b') x^2+1)$$How can we carry out Euclidean Divisions in $$ \mathbb{Z}[x]$$ when it is not a Euclidean Domain?

Can you clarify? Am i misunderstanding something? :(

Peter

Of course, it is a typo, I meant $\mathbb{R}$ instead of $\mathbb{Z}$, I've already corrected it.
 
Fernando Revilla said:
Of course, it is a typo, I meant $\mathbb{R}$ instead of $\mathbb{Z}$, I've already corrected it.

OK thanks Fernando, but then I am still left with the puzzle;

I can see your arguments regarding [FONT=MathJax_AMS]R[FONT=MathJax_Main][[FONT=MathJax_Math]x[FONT=MathJax_Main]][FONT=MathJax_Main]/[FONT=MathJax_Main]<[FONT=MathJax_Math]x[FONT=MathJax_Main]2[FONT=MathJax_Main]>[FONT=MathJax_Main]

But then how do we rigorously demonstrate that

[FONT=MathJax_AMS]Z[FONT=MathJax_Main][[FONT=MathJax_Math]x[FONT=MathJax_Main]][FONT=MathJax_Main]/[FONT=MathJax_Main]<[FONT=MathJax_Math]x[FONT=MathJax_Main]2[FONT=MathJax_Main]>[FONT=MathJax_Main]=[FONT=MathJax_Main]{[FONT=MathJax_Math]a[FONT=MathJax_Math]x[FONT=MathJax_Main]+[FONT=MathJax_Math]b[FONT=MathJax_Main]+[FONT=MathJax_Main]<[FONT=MathJax_Math]x[FONT=MathJax_Main]2[FONT=MathJax_Main]>[FONT=MathJax_Main]|[FONT=MathJax_Math]a[FONT=MathJax_Main],[FONT=MathJax_Math]b[FONT=MathJax_Main]∈[FONT=MathJax_AMS]Z[FONT=MathJax_Main]} given that we cannot use the Division Algorithm

Can you help?

Peter[FONT=MathJax_AMS]Z[FONT=MathJax_Main][[FONT=MathJax_Math]x[FONT=MathJax_Main]][FONT=MathJax_Main]/[FONT=MathJax_Main]<[FONT=MathJax_Math]x[FONT=MathJax_Main]2[FONT=MathJax_Main]>[FONT=MathJax_Main]=[FONT=MathJax_Main]{[FONT=MathJax_Math]a[FONT=MathJax_Math]x[FONT=MathJax_Main]+[FONT=MathJax_Math]b[FONT=MathJax_Main]+[FONT=MathJax_Main]<[FONT=MathJax_Math]x[FONT=MathJax_Main]2[FONT=MathJax_Main]>[FONT=MathJax_Main]|[FONT=MathJax_Math]a[FONT=MathJax_Main],[FONT=MathJax_Math]b[FONT=MathJax_Main]∈[FONT=MathJax_AMS]Z[FONT=MathJax_Main]}
 
Peter said:
But then how do we rigorously demonstrate that [FONT=MathJax_AMS]Z[FONT=MathJax_Main][[FONT=MathJax_Math]x[FONT=MathJax_Main]][FONT=MathJax_Main]/[FONT=MathJax_Main]<[FONT=MathJax_Math]x[FONT=MathJax_Main]2[FONT=MathJax_Main]>[FONT=MathJax_Main]=[FONT=MathJax_Main]{[FONT=MathJax_Math]a[FONT=MathJax_Math]x[FONT=MathJax_Main]+[FONT=MathJax_Math]b[FONT=MathJax_Main]+[FONT=MathJax_Main]<[FONT=MathJax_Math]x[FONT=MathJax_Main]2[FONT=MathJax_Main]>[FONT=MathJax_Main]|[FONT=MathJax_Math]a[FONT=MathJax_Main],[FONT=MathJax_Math]b[FONT=MathJax_Main]∈[FONT=MathJax_AMS]Z[FONT=MathJax_Main]} given that we cannot use the Division Algorithm

If $p(x)=a_nx^n+\ldots+a_2x^2+a_1x+a_0\in\mathbb{Z}[x]$, then $p(x)-(a_0+a_1x)=x^2h(x)$ with $h(x)\in\mathbb{Z}[x]$, so $p(x)+(x^2)=(a_0+a_1x)+(x^2)$ i.e. $[p(x)]=[a_0+a_1x]$.
 
Fernando Revilla said:
If $p(x)=a_nx^n+\ldots+a_2x^2+a_1x+a_0\in\mathbb{Z}[x]$, then $p(x)-(a_0+a_1x)=x^2h(x)$ with $h(x)\in\mathbb{Z}[x]$, so $p(x)+(x^2)=(a_0+a_1x)+(x^2)$ i.e. $[p(x)]=[a_0+a_1x]$.

Thanks again Fernando, that has made the case for $$ \mathbb{Z}[x]/<x^2>$$ very clear.

But maybe I did not ask a general enough question because I cannot see how the abve would work for $$ \mathbb{Z}[x]/<x^2 + a >$$ where $$ a \in \mathbb{Z} $$ - since then it seems that you would have to use the Division Algorithm.

Can someone please clarify this for me?

Peter
 
Peter said:
But maybe I did not ask a general enough question because I cannot see how the abve would work for $$ \mathbb{Z}[x]/<x^2 + a >$$ where $$ a \in \mathbb{Z} $$ - since then it seems that you would have to use the Division Algorithm.

Can someone please clarify this for me?

I give you a hint. Suppose $p(x)\in\mathbb{Z}[x]$ has degree $\geq 2$, for example $p(x)=3x^3+7x^2-6x+5$. We have to proof that there exists $\alpha x+\beta\in\mathbb{Z}[x]$ such that $$p(x)-(\alpha x +\beta)=h(x)(x^2+1)\mbox { for some }h(x)\in\mathbb{Z}[x]\qquad (*)$$ The polynomial $h(x)$ has necessarily the form $h(x)=b_1x+b_0$. Now, identify coefficients in $(*)$ and you'll easily verify that there exists $\alpha x +\beta=-9x-2$. Try to generalize but please, show some work before asking.
 
Fernando Revilla said:
I give you a hint. Suppose $p(x)\in\mathbb{Z}[x]$ has degree $\geq 2$, for example $p(x)=3x^3+7x^2-6x+5$. We have to proof that there exists $\alpha x+\beta\in\mathbb{Z}[x]$ such that $$p(x)-(\alpha x +\beta)=h(x)(x^2+1)\mbox { for some }h(x)\in\mathbb{Z}[x]\qquad (*)$$ The polynomial $h(x)$ has necessarily the form $h(x)=b_1x+b_0$. Now, identify coefficients in $(*)$ and you'll easily verify that there exists $\alpha x +\beta=-9x-2$. Try to generalize but please, show some work before asking.

Thanks Fernando.

Just working on this now ... but please permit one question ... as I am working ...

You write:

"The polynomial $h(x)$ has necessarily the form $h(x)=b_1x+b_0$..."

Why is this the case?

Peter
 
  • #10
Take a particular example:

Take $$ p(x) \in \mathbb{Z}[x] $$ to be

$$ p(x) = 3x^3 + 7x^2 -6x + 5 $$

Then p(x0 is a member of the coset $$ \alpha x + \beta $$ if

$$ p(x) - (\alpha x + \beta ) = (b_1 x + b_0) (x^2 + 1 $$ ... (1)

If we assume $$ (\alpha x + \beta ) $$ = (-9x - 2) then we have

LHS of (1) = $$ 3x^3 + 7x^2 + 3x + 7 $$

and

RHS of (1) = $$ b_1 x^3 + b_0 x^2 = b_1 x + b_0 $$

So if we put $$ b_1 = 3 $$ and $$ b_0 = 7 $$ then LHS = RHS and we have verified (1)Generalise: (not quite sure here)

If p(x) is a member of $$ <x^2 + 1> $$ then

$$ p(x) - ( \alpha x + \beta ) = (b_0 + b_1 x) (x^2 + 1) $$

This is true if $$ \alpha = b_1 $$ and $$ \beta = b_0 $$

Thus

$$ p(x) + <x^2 + 1> = ( \alpha x + \beta) + <x^2 + 1> $$

i.e $$ <p(x)> = (\alpha x + \beta )$$

Is that OK? (I am not sure of the genalisation)

Peter
 
  • #11
Peter said:
Is that OK? (I am not sure of the genalisation)
Yes, it is OK. You can generalize using following theorem:

Theorem. Let $D$ be an integral domain, $f(x), g(x)\in D[x]$ with $g(x)\neq 0$. Suppose that $\mbox{deg }g(x)=m$ with leading coefficiet $b_m$. Then, there exist $k\in\mathbb{N}$, $q(x),r(x)\in D[x]$ with $\mbox{deg }r(x)<\mbox{deg }g(x)$ such that: $$b_m^kf(x)=q(x)g(x)+r(x)$$ Now, apply this theorem for $D=\mathbb{Z}$, $g(x)=x^2+1$ (so $b_m=1$) and you'll obtain

$f(x)=q(x)(x^2+1)+\alpha x+\beta$ i.e. $f(x)+(x^2+1)=\alpha x +\beta +(x^2+1)$

Alternatively to that theorem, choose a general polynomial $f(x)=a_nx^n+\ldots+a_1x+a_0$ and identify coefficients in $f(x)-(\alpha x+\beta)=(x^2+1)(b_{n-2}x^{n-2}+\ldots+b_0)$.
 
Last edited:
  • #12
Fernando Revilla said:
Yes, it is OK. You can generalize using following theorem:

Theorem. Let $D$ be an integral domain, $f(x), g(x)\in D[x]$ with $g(x)\neq 0$. Suppose that $\mbox{deg }g(x)=m$ with leading coefficiet $b_m$. Then, there exist $k\in\mathbb{N}$, $q(x),r(x)\in D[x]$ with $\mbox{deg }r(x)<\mbox{deg }g(x)$ such that: $$b_m^kf(x)=q(x)g(x)+r(x)$$ Now, apply this theorem for $D=\mathbb{Z}$, $g(x)=x^2+1$ (so $b_m=1$) and you'll obtain

$f(x)=q(x)(x^2+1)+\alpha x+\beta$ i.e. $p(x)+(x^2+1)=\alpha x +\beta +(x^2+1)$

Alternatively to that theorem, choose a general polynomial $f(x)=a_nx^n+\ldots+a_1x+a_0$ and identify coefficients in $f(x)-(\alpha x+\beta)=(x^2+1)(b_{n-2}x^{n-2}+\ldots+b_0)$.

Fernando,

My thanks for all your helpful guidance

Peter
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 26 ·
Replies
26
Views
745
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
783
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
847