MHB Polynomials and Numerical Analysis

Suvadip
Messages
68
Reaction score
0
Why polynomials are used in numerical analysis?
 
Mathematics news on Phys.org
Re: Numerical analysis

suvadip said:
Why polynomials are used in numerical analysis?

This is a very broad question.. I suppose because their structure is relatively straightforward and well-understood, and they are flexible yet easy to manipulate (it's trivial to differentiate/integrate/add/multiply polynomials, they are well-behaved with respect to numerical approximation methods, we know exactly when they cross the x-axis, we can easily find their minima and maxima, they work the same in the complex plane, and so on..) Can you be more specific?​
 
Re: Numerical analysis

suvadip said:
Why polynomials are used in numerical analysis?

Polynomial are based on the elentary operators of sum and multiplication, the most feasible for humans and computers... that's why N.A., the scope of which is to solve numerically problems, is pratically based on polynomials...

Kind regards

$\chi$ $\sigma$
 
Re: Numerical analysis

I think another reason why numerical analysis uses polynomials is that they are dense in some very large function spaces. That means (in case you weren't already aware of what it means) that you can approximate a very large number of functions with polynomials. This is quite useful in differential equations, with series methods like Frobenius. Indeed, the motion of, say, a round drum head when you hit it can be modeled using Bessel functions, which are written as an infinite sum of polynomials.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top