Popularizing a property for n-bonacci numbers without publishing it?

Click For Summary

Discussion Overview

The discussion revolves around a property of n-bonacci numbers, specifically a polynomial relationship involving these numbers. Participants explore the implications of this property, its potential for publication, and the terminology used in relation to Fibonacci and n-bonacci sequences. The conversation includes suggestions for how to disseminate the findings and considerations regarding the publication of short mathematical papers.

Discussion Character

  • Exploratory
  • Debate/contested
  • Technical explanation
  • Meta-discussion

Main Points Raised

  • One participant presents a polynomial property of n-bonacci numbers and expresses uncertainty about its significance for publication.
  • Another participant suggests consulting a math professor to determine if the property is already known or easily derived from existing knowledge.
  • Several participants recommend writing a short paper in LaTeX as good practice, despite concerns about the paper's length.
  • There is a discussion about the derivation of the polynomial equation, with some participants seeking clarification on specific algebraic steps.
  • References to notable short papers in mathematics are provided as examples of successful publications of brief findings.
  • Suggestions for potential publication venues, such as the American Mathematical Monthly and the Summer of Math Exposition, are mentioned.
  • A participant emphasizes the importance of precise terminology when discussing Fibonacci and n-bonacci numbers.

Areas of Agreement / Disagreement

Participants express a mix of opinions regarding the significance of the property and its potential for publication. While some encourage writing a paper, others question whether the property is novel or worth publishing. There is no consensus on the best course of action.

Contextual Notes

There are discussions about the definitions and terminology related to Fibonacci and n-bonacci numbers, highlighting the need for precision in mathematical language. Additionally, the conversation reflects uncertainty about the originality of the proposed property.

Who May Find This Useful

This discussion may be of interest to mathematicians, students studying number theory, and individuals exploring publication strategies for mathematical findings.

MevsEinstein
Messages
124
Reaction score
36
TL;DR
I found a super cool property of n-bonacci numbers but it isn't really worth publishing. Ho do I make it known?
Hi PF!

Everyone knows that: $${\varphi }^2 - \varphi - 1 = 0$$ But guess what? $${\varphi}^3-2{\varphi}^2+1=0$$ Generalizing this for all n-bonacci numbers: $$x^{n+1}+1 = 2x^n$$ where ##x## is the n-bonacci number and ##n## is the degree of the polynomial that the n-bonacci number is a root of, i.e: ##x^n-x^{n-1}-...-x-1=0##. To prove this property, what we do is to use the fact that all the terms of lower degree than ##n## are in a geometric series with ratio ##x## and with a beginning term ##-1##: $$x^n-\frac{1-x^n}{1-x}=0$$$$x^n=\frac{1-x^n}{1-x}$$$$x^n-x^{n+1}=1-x^n$$$$[{2x^n=x^{n+1}+1}]$$ Now this is a very small property that isn't worth writing a paper on it (I think), but it's cool. Writing in Physics Forums is pretty good already, but how do I spread it quicker?
 
Last edited:
  • Like
Likes   Reactions: KDunc
Mathematics news on Phys.org
Before you publish it, you might want to talk with a math prof. It may well be that your property is easily derived from a known property or it is a known property to those experts in the field.
 
  • Like
Likes   Reactions: mfb
I'd say write a short paper about it in LaTeX with everything: introduction, history, your lemma and its proof and bibliography. It is good practice nevertheless.
 
  • Like
  • Informative
Likes   Reactions: MevsEinstein and berkeman
drmalawi said:
I'd say write a short paper about it in LaTeX with everything: introduction, history, your lemma and its proof and bibliography. It is good practice nevertheless.
Yeah I thought that since the paper would probably be too small I wouldn't be able to publish it. But maybe, who knows.
 
It’s quite straightforward to derive:
$$\varphi^2-\varphi-1=0\Rightarrow\varphi^2-\varphi=1$$
$$\therefore\varphi^3-2\varphi^2+1=\varphi^3-2\varphi^2+\varphi^2-\varphi=\varphi^3-\varphi^2-\varphi=0$$
Pull out a factor of ##\varphi## to get the original expression.
 
  • Like
Likes   Reactions: malawi_glenn
TeethWhitener said:
$$\therefore\varphi^3-2\varphi^2+1=\varphi^3-2\varphi^2+\varphi^2-\varphi=\varphi^3-\varphi^2-\varphi=0$$
Where did you get ##\varphi^3-2\varphi^2+\varphi^2-\varphi = \varphi^3-2\varphi^2+1##? I don't understand this part.
 
It’s in the first line:
$$\varphi^2-\varphi=1$$
 
  • Like
Likes   Reactions: malawi_glenn and MevsEinstein
  • #10
If you can frame it in the right way, American Mathematical Monthly could be a good place to publish a "small" fact like this. I've come across many little bits and pieces published there as visual proofs or exercises in pedagogy, for example.
 
  • Like
Likes   Reactions: malawi_glenn
  • #12
MevsEinstein said:
Summary: I found a super cool property of n-bonacci numbers but it isn't really worth publishing. Ho do I make it known?

Hi PF!

Everyone knows that: $${\varphi }^2 - \varphi - 1 = 0$$ But guess what? $${\varphi}^3-2{\varphi}^2+1=0$$ Generalizing this for all n-bonacci numbers:
Be careful with terminology; we normally use Fibonacci number to refer to a term in the Fibonacci sequence 1, 1, 2, 3, 5, 8... thus the 6th Fibonacci number is 8. We generalise this to refer to the terms of the n-bonacci sequence as n-bonacci numbers, see http://oeis.org/wiki/N-bonacci_numbers.

The numbers ## x ## which are roots to the equation ## x^{n+1}+1 = 2x^n ## are called n-bonacci constants. This equation is well-known (often written in the form ## x + \frac 1 {x^n} = 2 ##); in fact we define the n-bonacci constant as the single root > 1 of ## x + \frac 1 {x^n} = 2 ##.

Also be very carful not to use the word series when you mean sequence.
 
Last edited:
  • Like
Likes   Reactions: malawi_glenn
  • #13
MevsEinstein said:
Where did you get ##\varphi^3-2\varphi^2+\varphi^2-\varphi = \varphi^3-2\varphi^2+1##? I don't understand this part.
They added ##\varphi^3-2\varphi^2## to both sides of the equation. Since they've added these terms to both sides, they cancel each other out, so they haven't changed the equation or relationship. As demonstrated, this can be a very useful tool to make the algebra a bit easier or to demonstrate a property that is not otherwise immediately obvious.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K