Undergrad Positive Definite Block Matrices

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Matrix
Click For Summary
SUMMARY

The discussion establishes that a block matrix of the form \begin{pmatrix} A & M\\ M^* & B\end{pmatrix} , where ##A## and ##B## are positive definite complex ##n \times n## matrices, is positive definite if and only if the matrix ##M## can be expressed as ##M = A^{1/2}CB^{1/2}## for some matrix ##C## with an operator norm ##\|C\| < 1##. This result is crucial for understanding the conditions under which block matrices maintain positive definiteness in complex matrix theory.

PREREQUISITES
  • Understanding of positive definite matrices
  • Familiarity with complex matrix operations
  • Knowledge of operator norms
  • Basic concepts of block matrices
NEXT STEPS
  • Study the properties of positive definite matrices in depth
  • Learn about operator norms and their implications in matrix theory
  • Explore block matrix structures and their applications
  • Investigate the implications of matrix decompositions in complex analysis
USEFUL FOR

Mathematicians, researchers in linear algebra, and anyone studying complex matrix theory or working with positive definite matrices.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Suppose ##A## and ##B## are positive definite complex ##n \times n## matrices. Let ##M## be an arbitrary complex ##n \times n## matrix. Show that the block matrix ##\begin{pmatrix} A & M\\ M^* & B\end{pmatrix}## is positive definite if and only if ##M = A^{1/2}CB^{1/2}## for some matrix ##C## of operator norm ##\|C\| < 1##.
 
Last edited:
  • Like
Likes Greg Bernhardt and topsquark
Physics news on Phys.org
The matrix ##\begin{pmatrix}A & M\\M^* & B\end{pmatrix}## is positive definite if and only if
$$\begin{pmatrix}A^{-1/2} & 0\\0 & B^{-1/2}\end{pmatrix} \begin{pmatrix}A & M\\M^* & B\end{pmatrix} \begin{pmatrix} A^{-1/2} & 0\\0 & B^{-1/2}\end{pmatrix} = \begin{pmatrix} I & A^{-1/2}M B^{-1/2}\\ B^{-1/2}M^* A^{-1/2} & I\end{pmatrix}$$ is positive definite. Let ##C = A^{-1/2} M B^{-1/2}##, and write ##C## in SVD ##C = U\Sigma V^*## where ##\Sigma = \operatorname{diag}(\sigma_1,\ldots, \sigma_n)## is the diagonal matrix of singular values of ##C##. Since $$\begin{pmatrix}I & C\\C^* & I\end{pmatrix} = \begin{pmatrix}U & 0\\0 & V\end{pmatrix} \begin{pmatrix} I & \Sigma\\ \Sigma & I\end{pmatrix} \begin{pmatrix}U^* & 0 \\0 & V^*\end{pmatrix}$$ then ##\begin{pmatrix} I & C\\C^* & I\end{pmatrix}## is positive definite if and only if ##\begin{pmatrix}I & \Sigma\\\Sigma & I\end{pmatrix}## is positive definite. The latter matrix is unitarily similar to block sum $$\bigoplus_{i = 1}^n \begin{pmatrix}1 & \sigma_i\\\sigma_i & 1\end{pmatrix}$$ It follows that ##\begin{pmatrix}I & C\\C^* & I\end{pmatrix}## is positive definite if and only if ##\sigma_i^2 < 1## for all ##i##, i.e., ##\|C\| < 1##. Finally, observe that the equation for ##C## is equivalent to ##M = A^{1/2} C B^{1/2}##.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K