POTW Positive Definite Block Matrices

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Matrix
Click For Summary
The discussion focuses on the conditions under which the block matrix formed by positive definite matrices A and B, along with an arbitrary matrix M, is also positive definite. It establishes that this block matrix is positive definite if and only if M can be expressed as A^{1/2}CB^{1/2}, where C is a matrix with an operator norm less than 1. The implications of this relationship highlight the interplay between the matrices involved and the constraints on M. The proof and exploration of this condition are crucial for understanding the properties of block matrices in linear algebra. This conclusion emphasizes the significance of the operator norm in determining the positive definiteness of the block matrix.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Suppose ##A## and ##B## are positive definite complex ##n \times n## matrices. Let ##M## be an arbitrary complex ##n \times n## matrix. Show that the block matrix ##\begin{pmatrix} A & M\\ M^* & B\end{pmatrix}## is positive definite if and only if ##M = A^{1/2}CB^{1/2}## for some matrix ##C## of operator norm ##\|C\| < 1##.
 
Last edited:
  • Like
Likes Greg Bernhardt and topsquark
Physics news on Phys.org
The matrix ##\begin{pmatrix}A & M\\M^* & B\end{pmatrix}## is positive definite if and only if
$$\begin{pmatrix}A^{-1/2} & 0\\0 & B^{-1/2}\end{pmatrix} \begin{pmatrix}A & M\\M^* & B\end{pmatrix} \begin{pmatrix} A^{-1/2} & 0\\0 & B^{-1/2}\end{pmatrix} = \begin{pmatrix} I & A^{-1/2}M B^{-1/2}\\ B^{-1/2}M^* A^{-1/2} & I\end{pmatrix}$$ is positive definite. Let ##C = A^{-1/2} M B^{-1/2}##, and write ##C## in SVD ##C = U\Sigma V^*## where ##\Sigma = \operatorname{diag}(\sigma_1,\ldots, \sigma_n)## is the diagonal matrix of singular values of ##C##. Since $$\begin{pmatrix}I & C\\C^* & I\end{pmatrix} = \begin{pmatrix}U & 0\\0 & V\end{pmatrix} \begin{pmatrix} I & \Sigma\\ \Sigma & I\end{pmatrix} \begin{pmatrix}U^* & 0 \\0 & V^*\end{pmatrix}$$ then ##\begin{pmatrix} I & C\\C^* & I\end{pmatrix}## is positive definite if and only if ##\begin{pmatrix}I & \Sigma\\\Sigma & I\end{pmatrix}## is positive definite. The latter matrix is unitarily similar to block sum $$\bigoplus_{i = 1}^n \begin{pmatrix}1 & \sigma_i\\\sigma_i & 1\end{pmatrix}$$ It follows that ##\begin{pmatrix}I & C\\C^* & I\end{pmatrix}## is positive definite if and only if ##\sigma_i^2 < 1## for all ##i##, i.e., ##\|C\| < 1##. Finally, observe that the equation for ##C## is equivalent to ##M = A^{1/2} C B^{1/2}##.