MHB Positive integers ordered pairs (x,y,z)

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Integers Positive
juantheron
Messages
243
Reaction score
1
Total no. of positive integers ordered pairs of the equation $$3^x+3^y+3^z = 7299$$
 
Mathematics news on Phys.org
WLOG $z > y > x$. Then $7299 = 3^x + 3^y + 3^z = 3^x(1 + 3^{y-x} + 3^{z-x})$. Note that $7299 = 3^2 \cdot 811$, thus $x$ is either $1$ or $2$. However $x = 2$ is the only possible candidate as $1 + 3^{y-x} + 3^{z-x}$ is not divisible by $3$. Thus. $3^y + 3^z = 7299 - 3^2 = 7290 = 3^6 \cdot 10$. Hence, as $y < z$, $3^y(1+3^{z-y}) = 3^6 \cdot 10$ and $y = 6$ as $1 + 3^{z-y}$ is not divisible by $3$. Hence $3^z = 7290 - 729 = 6561 = 3^8$. Thus $z=8$.

$(x, y, z) = (2, 6, 8)$ is the only possible solution upto rearrangement. Hence there are $3! = 6$ of them.
 
[sp]Convert 7299 to base 3: .101,000,100_3
Therefore: .7299 \:=\: 3^8 + 3^6 + 3^2 \quad\Rightarrow\quad \{x,y,z\} \,=\,\{2,6,8\}\;\text{ . . . 6 solutions} [/sp]
 
Thanks mathbalarka and Soroban.

My solution is same as Soroban (Base $3$ Representation of $7299$)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top