New version of the (main part of) the argument for the 1+1-dimensional case.
We're looking for a non-trivial subgroup of GL(ℝ
2), whose members are functions that change coordinates from one global inertial coordinate system to another. We are going to make a small number of assumptions about this group. They will be mathematical statements that can be thought of as making the following ideas precise.
- Each inertial observer has a finite velocity in the coordinates used by another.
- For each event x, there are at least two velocities at which an experiment performed at x can test the accuracy of predictions.
- For each event x, statements that two arbitrary inertial observers at x make about how the other guy's measurements relates to his own coordinate assignments must be symmetrical. (For example, if one of them can say "Your clock is slow by a factor of ##\gamma##.", the other one must be able to say the same thing).
- Positive velocities do not add up to negative velocities unless there's a reflection involved.
It's easy to make the first idea precise, if we first define the
velocity of an arbitrary ##\Lambda## in the group. Suppose that S and S' are global inertial coordinate systems, and that ##\Lambda## is the transformation from S to S'. We are going to define the velocity of ##\Lambda## as the "##\Delta x/\Delta t##" of the line that ##\Lambda^{-1}## sends the 0 axis to, because that line is the image in S of the world line of the S' observer. It's also the unique straight line through 0 and ##\Lambda^{-1}e_0##. $$\Lambda^{-1}e_0 =\Lambda^{-1}\begin{pmatrix}1\\ 0\end{pmatrix} =\begin{pmatrix}(\Lambda^{-1})_{00}\\ (\Lambda^{-1})_{10}\end{pmatrix}.$$ So we define the velocity of ##\Lambda## as ##(\Lambda^{-1})_{10}/(\Lambda^{-1})_{00}##.
The second idea can be made precise by requiring that there's a member of the group that has a non-zero velocity. (This assumption is necessary in the step that determines the relationship between the off-diagonal components).
The third idea can be made precise by requiring that ##(\Lambda^{-1}e_\mu)_\mu=(\Lambda e_\mu)_\mu## for all ##\mu\in\{0,1\}##. This is equivalent to saying that ##\Lambda^{-1}## and ##\Lambda## have the same diagonal elements.
Theorem: Suppose that ##G## is a subgroup of ##\operatorname{GL}(\mathbb R^2)## such that the following statements are true.
- There's a ##V:G\to\mathbb R## such that ##V(\Lambda)=-\frac{(\Lambda^{-1})_{10}}{(\Lambda^{-1})_{00}}## for all ##\Lambda\in G##.
- ##V(G)\neq\{0\}##.
- For all ##\mu\in\{0,1\}##, we have ##(\Lambda^{-1})_{\mu\mu}=\Lambda_{\mu\mu}##.
- For all ##\Lambda',\Lambda''\in G## with positive velocities and determinants, we have ##V(\Lambda'\Lambda'')>0##.
Then there's a ##K\geq 0## such that
$$G\subset\left\{\left.\frac{\sigma}{\sqrt{1-Kv^2}}\begin{pmatrix}1 & -Kv\\ -\rho v & \rho\end{pmatrix}\right|\ \sigma,\rho\in\{-1,1\}, 1-Kv^2>0\right\}.$$
Proof: Let ##\Lambda\in G## be arbitrary. Denote its components by a,b,c,d. We have
$$\Lambda=\begin{pmatrix}a & b\\ c & d\end{pmatrix},\quad \Lambda^{-1}=\frac{1}{ad-bc}\begin{pmatrix}d & -b\\ -c & a\end{pmatrix}.$$ Note that
$$V(\Lambda)=-\frac{(\Lambda^{-1})_{10}}{(\Lambda^{-1})_{00}}=-\frac{c}{d},\qquad V(\Lambda^{-1})=-\frac{\Lambda_{10}}{\Lambda_{00}}=\frac{c}{a}.$$ This means that assumption 1 implies that a≠0, d≠0. Assumption 3 implies that
$$a=\frac{d}{\det\Lambda},\quad d=\frac{a}{\det\Lambda}=\frac{d}{(\det\Lambda)^2}.$$ Since d≠0, this implies that ##\det\Lambda=\pm 1##.
Define ##\rho=\det\Lambda##, ##\gamma=|a|##, ##\sigma=\operatorname{sgn}(a)##, ##\alpha=b/a## and ##v=-\rho c/a##. Note that since ##a=\rho d##, this v is the velocity of ##\Lambda##.
$$\Lambda=\begin{pmatrix}a & b\\ c & \rho a\end{pmatrix} =a\begin{pmatrix}1 & b/a\\ c/a & \rho\end{pmatrix} =\sigma\gamma\begin{pmatrix}1 & \alpha\\ -\rho v & \rho \end{pmatrix}.$$ Let ##\Lambda',\Lambda''\in G_p## be arbitrary.
\begin{align}
&G_p\ni \Lambda'\Lambda'' =\sigma'\sigma''\gamma'\gamma''\begin{pmatrix}1 & \alpha'\\ -\rho' v' & \rho'\end{pmatrix}\begin{pmatrix}1 & \alpha''\\ -\rho'' v'' & \rho''\end{pmatrix} =\sigma'\sigma''\gamma'\gamma''\begin{pmatrix}1-\alpha'\rho''v'' & \alpha''+\alpha'\rho''\\ -\rho' v'-\rho''v'' & -\rho' v'\alpha''+\rho'\rho''\end{pmatrix}\\
&\rho'\rho'' =(\det\Lambda')(\det\Lambda'') =\det(\Lambda'\Lambda'')
=\frac{(\Lambda'\Lambda'')_{11}}{(\Lambda'\Lambda'')_{00}} =\frac{-\rho' v'\alpha''+\rho'\rho''}{1-\alpha'\rho''v''}.\end{align} Suppose that ##\rho'\rho''=1##. Then we have ##\rho'=\rho''## and
$$1=\frac{-\rho'v'\alpha''+1}{1-\alpha'\rho''v''}.$$ This is equivalent to ##\alpha'\rho''v'' =\rho'v'\alpha''##. Since ##\rho'=\rho''##, this is equivalent to ##\alpha' v''=v'\alpha''##.
Now suppose that ##\rho'\rho''=-1##. Then we have ##\rho'=-\rho''## and $$-1=\frac{-\rho'v'\alpha''-1}{1-\alpha'\rho''v''}.$$ This is equivalent to ##\alpha'\rho''v''=-\rho'v'\alpha''##. Since ##\rho'=-\rho''##, this is equivalent to ##\alpha' v''=v'\alpha''##.
So ##\alpha'v''=v'\alpha''## for all ##\Lambda',\Lambda''\in G##. If every member of ##G## has velocity 0, then this result tells us nothing. This is why we included assumption 2. It ensures that the result we just obtained implies the following.
- For all ##\Lambda'\in G##, if ##v'=0##, then ##\alpha'=0##.
- For all ##\Lambda',\Lambda''\in G## such that ##v'\neq 0## and ##v''\neq 0##,
$$\frac{\alpha''}{v''}=\frac{\alpha'}{v'}.$$
The second result implies that ##\alpha'/v'## has the same value for all ##\Lambda'\in G## such that ##v'\neq 0##. Denote this value by -K. The second result implies that if ##v\neq 0##, then ##\alpha=-Kv##. The first result implies that ##\alpha=-Kv## also when ##v=0##.
These results imply that
$$\Lambda=\sigma\gamma\begin{pmatrix}1 & -Kv\\ -\rho v & \rho\end{pmatrix},\quad\Lambda^{-1}=\frac{1}{\sigma\gamma(\rho-\rho Kv^2)}\begin{pmatrix}\rho & Kv\\ \rho v & 1\end{pmatrix} =\frac{\sigma}{\gamma(1-Kv^2)}\begin{pmatrix}1 & \rho Kv\\ v & \rho\end{pmatrix}.$$ Now assumption 3 tells us that
$$\sigma\gamma=\frac{\sigma}{\gamma(1-Kv^2)}.$$ Note that if K>0, this implies that ##1-Kv^2>0## (because ##\gamma^2>0##). If we define ##c=1/\sqrt{K}##, this is equivalent to ##v\in(-c,c)##.
Since ##\gamma=|\Lambda_{00}|>0##, the result above implies that
$$\gamma=\frac{1}{\sqrt{1-Kv^2}},$$ and therefore that
$$\Lambda=\frac{\sigma}{\sqrt{1-Kv^2}}
\begin{pmatrix}1 & -Kv\\ -\rho v & \rho\end{pmatrix}.$$ We will prove that K≥0 by deriving a contradiction from the assumption that K<0. So suppose that K<0.
We will prove that there's a ##\bar\Lambda\in G## such that ##\det\bar\Lambda>0## and ##v>0##. Let ##\Lambda## be an arbitrary member of G such that v≠0. (Assumption 2 ensures that such a ##\Lambda## exists). If ##\det V>0## and ##v>0##, we just define ##\bar\Lambda=\Lambda##. If ##\det V>0## and ##v<0##, then ##\det\Lambda^{-1}>0##, and ##V(\Lambda^{-1})=-v>0##. So we can just define ##\bar\Lambda=\Lambda^{-1}##. Now suppose that ##\det V<0##. For all ##\Lambda',\Lambda''\in G##,
$$V(\Lambda'\Lambda'') =-\frac{(\Lambda'\Lambda'')_{10}}{ (\Lambda'\Lambda'')_{00}} =\frac{\rho'v'+\rho''v''}{1-|K|v'v''}.$$ This implies that
$$V(\Lambda^2)=\rho\frac{2v}{1-|K|v^2}\neq 0.$$ We also have ##\det(\Lambda^2)=(\det\Lambda)^2=1##, so if ##V(\Lambda^2)>0##, we can define ##\bar\Lambda=\Lambda^2##. If ##V(\Lambda^2)<0##, then we can define ##\bar\Lambda=(\Lambda^2)^{-1}##.
Now let ##\Lambda## be an arbitrary member of ##G## such that ##\det\Lambda>0## and ##v>0##. Define ##\beta=\sqrt{|K|}v## and ##c=1/\sqrt{|K|}##. Let ##\theta## be the unique member of ##(-\pi/2,\pi/2)## such that ##\tan\theta=\beta##.\begin{align}
&\cos\theta>0\\
&1=\cos^2\theta+\sin^2\theta=\cos^2\theta(1+\beta^2)\\
&\cos\theta=\frac{1}{\sqrt{1+\beta^2}}\\
&\sin\theta =\frac{\sin\theta}{\cos\theta}\cos\theta =\frac{\beta}{\sqrt{1+\beta^2}}\\
&\Lambda =\frac{\sigma}{\sqrt{1-Kv^2}}
\begin{pmatrix}1 & -Kv\\ -v & 1\end{pmatrix} =\frac{\sigma}{\sqrt{1-Kv^2}}
\begin{pmatrix}1 & -\beta/c\\ -c\beta & 1\end{pmatrix}
=\sigma\begin{pmatrix}\cos\theta & \frac{1}{c}\sin\theta\\ -c\sin\theta & \cos\theta\end{pmatrix}
\end{align} Denote the right-hand side by ##T(\theta)##. The above implies that
$$\Lambda^2 =T(\theta)^2 =T(2\theta),$$ and (by induction) that for all ##n\in\mathbb Z^+##,
$$\Lambda^n=T(n\theta).$$ Let ##n\in\mathbb Z^+## be such that ##n\theta\in(\pi/2,3\pi/2)##.
$$V(\Lambda^n)=V(T(n\theta))=\frac{c\sin(n\theta)}{\cos(n\theta)}<0.$$ This contradicts assumption 4.