MHB Power Series Problem: Solve f(3x) = 1/(1 - 3x)

Click For Summary
The discussion centers on finding the power series for the function f(3x) = 1/(1 - 3x) using the geometric series. The correct power series expansion is identified as 1 + 3x + 9x^2 + 27x^3 + ... which converges for |x| < 1/3. A participant points out that simply plugging into a program without understanding the underlying mathematics can lead to incorrect results. The importance of comprehending the series rather than relying solely on computational tools is emphasized. Ultimately, the focus is on correctly applying the properties of power series to achieve the desired function expansion.
JProgrammer
Messages
20
Reaction score
0
So here is the problem I am trying to solve:

You can combine two (or more) convergent power series on the same interval I. Using the properties of the geometric series, find the power series of the function below.

Series:
f(x) = 1/(1 - x) = sigma k = 0, infinity = 1+ x + x^2 + x^3

Function:
f(3x) = 1/(1 - 3x)

I plug in: expand sum (1/(1 - 3x) to order infinity and it returns with just understanding the 1/1 - 3x part and nothing else, producing a wrong answer.

If someone could tell me what I am doing wrong, I would appreciate it.

Thank you,
 
Physics news on Phys.org
JProgrammer said:
. . . it returns . . .

Hi JProgrammer, what is "it"?

I believe the correct power series would be

$$1+3x+9x^2+27x^3+81x^4+\cdots$$

convergent for $|x|<\dfrac13$.
 
Let u= 3x. Then f(3x)= f(u)= 1+ u+ u^2+ u^3+ \cdot\cdot\cdot= 1+ 3x+ (3x)^2+ (3x)^3+ \cdot\cdot\cdot= 1+ 3x+ 9x^2+ 27x^3+ \cdot\cdot\cdot.

"I plug in: expand sum (1/(1 - 3x) to order infinity and it returns with just understanding the 1/1 - 3x part and nothing else, producing a wrong answer."

"Plug in" to what? Don't assume that some program can replace thinking!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K