MHB Precalculus help --> cos2x=3/5 and 90<x<180

  • Thread starter Thread starter yeny
  • Start date Start date
  • Tags Tags
    Precalculus
yeny
Messages
7
Reaction score
0
Hello, can someone please help me with this problem?

I have to find the values of the 6 trig functions if the conditions provided hold

cos2(theta)=3/5

90 degrees is less than or equal to theta, and theta is also less than or equal to 180 degrees

THANK you so much.
 
Mathematics news on Phys.org
yeny said:
Hello, can someone please help me with this problem?

I have to find the values of the 6 trig functions if the conditions provided hold

cos2(theta)=3/5

90 degrees is less than or equal to theta, and theta is also less than or equal to 180 degrees

given $\cos(2\theta) = \dfrac{3}{5}$ and $\theta$ resides in quadrant II ...

$\cos(2\theta) = 2\cos^2{\theta} -1 = \dfrac{3}{5} \implies \cos^2{\theta} = \dfrac{4}{5} \implies \cos{\theta} = - \dfrac{2}{\sqrt{5}}$

$\sin^2{\theta} = \dfrac{1}{5} \implies \sin{\theta} = \dfrac{1}{\sqrt{5}}$

use your basic trig identities to determine the values of the remaining four
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top