MHB Precalculus help --> cos2x=3/5 and 90<x<180

  • Thread starter Thread starter yeny
  • Start date Start date
  • Tags Tags
    Precalculus
AI Thread Summary
To solve the problem of finding the six trigonometric functions given cos(2θ) = 3/5 and 90° < θ < 180°, the first step is to recognize that θ is in the second quadrant. From the identity cos(2θ) = 2cos²(θ) - 1, it follows that cos²(θ) = 4/5, leading to cos(θ) = -2/√5. Additionally, sin²(θ) = 1/5 gives sin(θ) = 1/√5. The remaining trigonometric functions can be derived using basic identities, completing the solution.
yeny
Messages
7
Reaction score
0
Hello, can someone please help me with this problem?

I have to find the values of the 6 trig functions if the conditions provided hold

cos2(theta)=3/5

90 degrees is less than or equal to theta, and theta is also less than or equal to 180 degrees

THANK you so much.
 
Mathematics news on Phys.org
yeny said:
Hello, can someone please help me with this problem?

I have to find the values of the 6 trig functions if the conditions provided hold

cos2(theta)=3/5

90 degrees is less than or equal to theta, and theta is also less than or equal to 180 degrees

given $\cos(2\theta) = \dfrac{3}{5}$ and $\theta$ resides in quadrant II ...

$\cos(2\theta) = 2\cos^2{\theta} -1 = \dfrac{3}{5} \implies \cos^2{\theta} = \dfrac{4}{5} \implies \cos{\theta} = - \dfrac{2}{\sqrt{5}}$

$\sin^2{\theta} = \dfrac{1}{5} \implies \sin{\theta} = \dfrac{1}{\sqrt{5}}$

use your basic trig identities to determine the values of the remaining four
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top