Prime numbers vs consecutive natural numbers.

Click For Summary
SUMMARY

Prime numbers, with the exception of 2, can exclusively be expressed as the sum of two consecutive natural numbers. This conclusion is supported by the observation that the sum of k consecutive natural numbers is either 0 modulo k or 0 modulo k/2, limiting valid k values to 1 and 2. For example, the prime number 7 can be represented as 3 + 4, confirming the rule for odd primes. The discussion emphasizes the unique relationship between prime numbers and their representation through consecutive natural numbers.

PREREQUISITES
  • Understanding of prime numbers and their properties
  • Basic knowledge of natural numbers
  • Familiarity with modular arithmetic
  • Ability to perform simple arithmetic operations
NEXT STEPS
  • Explore the properties of prime numbers in number theory
  • Study modular arithmetic in depth
  • Investigate the representation of numbers as sums of consecutive integers
  • Learn about the implications of prime number representations in cryptography
USEFUL FOR

Mathematicians, educators, students studying number theory, and anyone interested in the properties of prime numbers and their relationships with natural numbers.

mente oscura
Messages
167
Reaction score
0
An easy question.

All "odd" number can be expressed as a sum of consecutive natural numbers.

Example:

35=17+18

35=5+6+7+8+9

35=2+3+4+5+6+7+8Question:

Demonstrate that prime numbers (except for the "2"), can only be expressed as the sum of two consecutive natural numbers.
 
Mathematics news on Phys.org
Re: prime numbers vs consecutive natural numbers.

Elementary. Sum of $k$ consecutive natural numbers is either $0 \pmod{k}$ or $0 \pmod{k/2}$ so the only plausible candidates are $k = 1$ and $k = 2$ which is easy to verify for odd primes.
 
Last edited:
Re: prime numbers vs consecutive natural numbers.

mathbalarka said:
Sum of $k$ consecutive natural numbers is $0 \pmod{k}$ so the only plausible candidate is $k = 1$ which is easy to verify for odd primes.

7=3+4 \rightarrow{} k=2
 
Re: prime numbers vs consecutive natural numbers.

Look at it again.
 
the question should be
Demonstrate that only prime numbers (except for the "2"), can be expressed as the sum of two consecutive natural numbers only.
let the number of numbers be n and 1st number a+1

then sum of numbers= an + n(n+1)/2

it is integer
if n is odd (n+1)/2 is integer so it is divsible by n

if n is even an and n(n+1)/2 is divisible by n/2

so if n > 2 and odd it is not prime as divsible by n

if n > 2 and even it is divisible by n/2(which is >= 2) so not prime
 
Last edited:

Similar threads

  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K