Principle of inclusion-exclusion proof

  • Context: Graduate 
  • Thread starter Thread starter mottov2
  • Start date Start date
  • Tags Tags
    Principle Proof
Click For Summary
SUMMARY

The principle of inclusion-exclusion states that for three events A, B, and C, the probability of their union is given by the formula P(A∪B∪C) = P(A) + P(B) + P(C) - P(A∩B) - P(A∩C) - P(B∩C) + P(A∩B∩C). The discussion highlights a proof attempt using disjoint events and the additivity rule, emphasizing the need for clarity in notation and the laws of probability applied. The proof was critiqued for potential overcomplication and lack of explicit mention of the underlying laws.

PREREQUISITES
  • Understanding of basic probability concepts, including events and unions
  • Familiarity with the additivity rule in probability
  • Knowledge of intersection and union operations in set theory
  • Experience with formal proof techniques in mathematics
NEXT STEPS
  • Study the laws of probability, focusing on the additivity and multiplication rules
  • Learn about formal proof techniques, including Proof by Induction
  • Explore set theory concepts, particularly operations involving unions and intersections
  • Review examples of inclusion-exclusion principles in combinatorics
USEFUL FOR

Mathematicians, students studying probability theory, and anyone interested in formal proofs and set operations will benefit from this discussion.

mottov2
Messages
13
Reaction score
0
There are 3 events A,B and C prove that

P(A\cupB\cupC) = P(A)+P(B)+P(C)-P(A\capB)-P(A\capC)-P(B\capC)+P(A\capB\capC)
each event is disjoint so by the additivity rule...

My attempt:
A\cupB\cupC = (A\capB\capC)\cup(A\cap[A\capB\capC]c)\cup([B\capC]\cap[A\capB\capC]c)\cup(C\capAc\cap([B\capC]\cap[A\capB\capC]c)c)\cup(B\capAc\cap([B\capC]\cap[A\capB\capC]c)c)

each event is disjoint so by the additivity rule...
P(A\cupB\cupC) = P(A\capB\capC)+P(A\cap[A\capB\capC]c)+P([B\capC]\cap[A\capB\capC]c)+P(C\capAc\cap([B\capC]\cap[A\capB\capC]c)c)+P(B\capAc\cap([B\capC]\cap[A\capB\capC]c)c)

P(A\cap(A\capB\capC)c) = P(A)-P(A\capB\capC)
P((B\capC)\cap(A\capB\capC)c) = P(B\capC)-P(A\capB\capC)
P(C\capAc\cap([B\capC]\cap[A\capB\capC]c)c) = P(C\cap(A\capC)c\cap([B\capC]\cap[A\capB\capC]c)c) = P(C)-P(A\capC)-P((B\capC)\cap(A\capB\capC)c) = P(C)-P(A\capC)-P(B\capC)+P(A\capB\capC)
P(B\capAc\cap([B\capC]\cap[A\capB\capC]c)c) = P(B\cap(A\capB)c\cap([B\capC]\cap[A\capB\capC]c)c) = P(B)-P(A\capB)-P((B\capC)\cap(A\capB\capC)c) = P(B)-P(A\capB)-P(B\capC)+P(A\capB\capC)

then by substitution...

P(A\cupB\cupC) = P(A\capB\capC)+P(A)-P(A\capB\capC)+P(B\capC)-P(A\capB\capC)+P(C)-P(A\capC)-P(B\capC)+P(A\capB\capC)+P(B)-P(A\capB)-P(B\capC)+P(A\capB\capC)
= P(A)+P(B)+P(C)-P(A\capC)-P(A\capB)-P(B\capC)+P(A\capB\capC)

did i do this right? I feel like i may have overcomplicated it..
 
Last edited:
Physics news on Phys.org
You haven't explained what laws of probability can be assumed in order to prove the result and you didn't say which laws you used. Putting a 'P' in front of each set in an expression is not "substitution".
 
Proof By Induction is a lot more elegant,but you have to be careful of your notation
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
10
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
1
Views
2K