Probability/Combinatorics: # ways of picking 5 from 3 groups of 6

  • Thread starter Thread starter Master1022
  • Start date Start date
  • Tags Tags
    Groups
Click For Summary

Homework Help Overview

The discussion revolves around a probability problem involving the selection of marbles from a bag containing red, blue, and yellow marbles. The original poster attempts to determine the probability of selecting exactly two colors when picking five marbles without replacement from a total of eighteen marbles.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • The original poster presents two methods for calculating the probability, one using a counting argument and the other framing the problem with equations. They express confusion regarding the total number of ways to select marbles and question the validity of their approaches.
  • Some participants suggest alternative notations and methods, while others seek clarification on the reasoning behind specific terms in the probability equations.
  • There is a discussion about the interpretation of events in set notation and the implications of using different terms in the probability calculations.

Discussion Status

The conversation is ongoing, with participants exploring different interpretations and methods. Some guidance has been offered regarding the use of probability rules and set notation, but there is no explicit consensus on the best approach. The original poster has received confirmation that one of their calculated probabilities is correct.

Contextual Notes

Participants are navigating the complexities of combinatorial probability and the implications of their assumptions. There is mention of the interview context for the original problem, which may impose time constraints on the discussion.

Master1022
Messages
590
Reaction score
116
Homework Statement
We have a bag of 18 marbles: 6 red, 6 blue, and 6 yellow. Now I randomly select 5 marbles from the bag without replacement. What is the probability that I have picked out EXACTLY 2 colors?
Relevant Equations
Combinatorics
Hi,

I was attempting the following question and was getting slightly stuck.

Question: We have a bag of 18 marbles: 6 red, 6 blue, and 6 yellow. Now I randomly select 5 marbles from the bag without replacement. What is the probability that I have picked out EXACTLY 2 colors?

Attempt: I tried to think about this problem in two different ways:

1) Pure counting argument such that ##p = \frac{\text{Number of ways which we pick 2 colors}}{\text{Total number of ways of picking 5 from 18}} ##

So my logic was as follows:
- there are ##\begin{pmatrix} 3 \\ 2 \end{pmatrix}## ways of picking 2 out of the three colors
- Then for each of those pairs of colors (let us call them A and B), we can do: (1 from A, 4 from B), (2 from A, 3 from B), (3 from A, 2 from B), (4 from A, 1 from B). This can be written more formally as:
\begin{pmatrix} 6 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 4 \end{pmatrix} + \begin{pmatrix} 6 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 3 \end{pmatrix} + \begin{pmatrix} 6 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 6 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 4 \end{pmatrix}

and thus this becomes:
\begin{pmatrix} 3 \\ 2 \end{pmatrix} \left( \begin{pmatrix} 6 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 4 \end{pmatrix} + \begin{pmatrix} 6 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 3 \end{pmatrix} + \begin{pmatrix} 6 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 6 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 4 \end{pmatrix} \right)

I am slightly confused on how to get the total number of ways of picking 5 from 3 groups of 6. I mean I can see the obvious ## \begin{pmatrix} 18 \\ 5 \end{pmatrix} ##, but doesn't that double count some groupings?? This was asked as an interview question, so I don't think I would have time to write down very elaborate alternative methods.

This would lead to:
p = \frac{\begin{pmatrix} 3 \\ 2 \end{pmatrix} \left( \begin{pmatrix} 6 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 4 \end{pmatrix} + \begin{pmatrix} 6 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 3 \end{pmatrix} + \begin{pmatrix} 6 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 6 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 4 \end{pmatrix} \right)}{\begin{pmatrix} 18 \\ 5 \end{pmatrix}} = \frac{65}{238}

2) The other 'method' was to frame the problem like: "how many solutions are there to the equation ## x_1 + x_2 = 5 ## where ## x_1 \geq 1 ## and ## x_2 \geq 1 ##.
- so there are still ##\begin{pmatrix} 3 \\ 2 \end{pmatrix}## ways of picking 2 out of the three colors
- then there would be ##\begin{pmatrix} (5 - 2) + (2 - 1) \\ (2 - 1) \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} ## ways choosing the groups...

- For the total number of ways to pick 5 from 18, we could use a similar framing of ## x_1 + x_2 + x_3 = 5 ##, but instead just have ## x_1 , x_2, x_3 \geq 0 ##. This leads to ## \begin{pmatrix} 5 + (3 - 1) \\ (3 - 1) \end{pmatrix} = \begin{pmatrix} 7 \\ 2 \end{pmatrix} ##

This would lead to:
p = \frac{\begin{pmatrix} 4 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}}{\begin{pmatrix} 7 \\ 2 \end{pmatrix}} = \frac{4}{7}

Can anyone help to reconcile which one of these methods is more appropriate for this problem?

Many thanks.
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
I would simply do:$$P = 3P(R+B) = 3(P(RB) - 2P(R))$$I'll let you work out the notation!
 
PeroK said:
I would simply do:$$P = 3P(R+B) = 3(P(RB) - 2P(R))$$I'll let you work out the notation!
Thanks @PeroK ! Unfortunately, I have been looking at this for a while and am a bit confused. Here is what I have made of it. We are using the probability rule:

P(A \cup B) = P(A) + P(B) - P(A \cap B)

You have P(R + B) as the ##P(R \cup B)##, but then I don't understand why the final term in the equation is ## P(R \cap B) - 2 \cdot P(R) ## instead of ## 2 P(R) - P(R \cap B) ##? (is that a correct understanding?
 
Master1022 said:
Thanks @PeroK ! Unfortunately, I have been looking at this for a while and am a bit confused. Here is what I have made of it. We are using the probability rule:

P(A \cup B) = P(A) + P(B) - P(A \cap B)

You have P(R + B) as the ##P(R \cup B)##, but then I don't understand why the final term in the equation is ## P(R \cap B) - 2 \cdot P(R) ## instead of ## 2 P(R) - P(R \cap B) ##? (is that a correct understanding?
Well, ##R + B## must indicate one of the events you are looking for; namely, only Red and Blue balls and at least one of each. I'm not sure I understand the idea of translating to set notation? Why not leave things as they are?

Do you understand the factor of ##3##?

I didn't want to make it too easy, so I wrote ##-2P(R)## instead of the more suggestive ##-P(R) - P(B)##.
 
  • Like
Likes   Reactions: Master1022
PS I just checked the answer: ##65/238## is correct.
 
PeroK said:
Well, ##R + B## must indicate one of the events you are looking for; namely, only Red and Blue balls and at least one of each.
Oh I was thinking in terms of Venn diagrams, when R + B (with + being a union), but I guess that isn't what you meant? Then what does (RB) represent - I would have thought that meant both red and blue colored balls.

PeroK said:
I'm not sure I understand the idea of translating to set notation? Why not leave things as they are?
Hmm, that is what came to mind when I saw the form of that equation...

PeroK said:
Do you understand the factor of ##3##?
I think that is from the 3C2 = 3 (i.e. the number of ways to choose 2 colors from 3)

PeroK said:
I didn't want to make it too easy, so I wrote ##-2P(R)## instead of the more suggestive ##-P(R) - P(B)##.
I understood the symmetry part of it (##P(R) = P(B)##) so we can combine them. I think my question was why the equation was ##P(RB) - 2P(R)## instead of the other way around (i.e. ##2P(R) - P(RB)##)
 
Master1022 said:
I understood the symmetry part of it (##P(R) = P(B)##) so we can combine them. I think my question was why the equation was ##P(RB) - 2P(R)## instead of the other way around (i.e. ##2P(R) - P(RB)##)
I guess I should come clean:

##R + B## was only red and blue with at least one of each.

##RB## was only red and blue (i.e. no yellows) and includes the cases of all red and all blue. I guess I could have used ##no \ Y## instead.

##R## is all red.
 
Actually the 18C5 makes sense if I think about the Vandermonde Identity.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
4K
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
15
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K