Probability current density in E.M. field

aa
Messages
20
Reaction score
14
Derive the probability current density for a particle
in an electromagnetic field.

(I previously posted this on StackExchange. Please pardon,
but I have been spending a lot of time on this and if anyone
knows exactly what the subtle trick involved is, I
would really appreciate it.)

http://physics.stackexchange.com/qu...lity-current-density-factors-of-2-discrepancy

Timaeus at StackExchange said that I need to be less
cavalier with moving operators around (since everything is
technically an operator and operators do not commute in
general). Yet after trying to be more rigorous
about preserving order, it still doesn't work for me.

We begin:

\dfrac{\partial \rho}{\partial t}<br /> =<br /> \dfrac{\partial}{\partial t} (\Psi^* \Psi)<br /> =<br /> \dfrac{\partial \Psi^*}{\partial t} \Psi<br /> +<br /> \Psi^* \dfrac{\partial \Psi}{\partial t}

H is, if we substitute in -i\hbar \nabla for \vec{p}:

H = \frac{1}{2m}(\vec{p} - \frac{q}{c} \mathbf{A}) \cdot<br /> (\vec{p} - \frac{q}{c} \mathbf{A}) + q\phi \\<br /> = \frac{1}{2m}(-i\hbar \nabla - \frac{q}{c} \mathbf{A}) \cdot<br /> (-i\hbar \nabla - \frac{q}{c} \mathbf{A}) + q\phi \\<br /> = \frac{1}{2m}(i\hbar \nabla + \frac{q}{c} \mathbf{A}) \cdot<br /> (i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi

Schrödinger equation and its complex conjugate:

\dfrac {\partial \Psi}{\partial t} = \dfrac{H\Psi}{i\hbar}

\dfrac {\partial \Psi^*}{\partial t} = \dfrac{(H \Psi)^*}{-i\hbar}

Substitute in:

\dfrac {\partial \rho}{\partial t}<br /> =<br /> \dfrac{-1}{i\hbar} [(H\Psi)^* \Psi - \Psi^* (H\Psi)]

Substitute in H:

\dfrac {\partial \rho}{\partial t}<br /> = \dfrac{-1}{i\hbar}<br /> \{ ( [\frac{1}{2m}(+i\hbar \nabla + \frac{q}{c} \mathbf{A})<br /> \cdot (+i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi]\Psi )^* \Psi \\<br /> - \Psi^*( [\frac{1}{2m}(+i\hbar \nabla + \frac{q}{c} \mathbf{A})<br /> \cdot (+i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi] \Psi)<br /> \}

Apply complex conjugate:

\dfrac {\partial \rho}{\partial t}<br /> =\dfrac{-1}{i\hbar}<br /> \{ ( [\frac{1}{2m}(-i\hbar \nabla + \frac{q}{c} \mathbf{A})<br /> \cdot (-i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi]\Psi^* ) \Psi \\<br /> - \Psi^*( [\frac{1}{2m}(+i\hbar \nabla + \frac{q}{c} \mathbf{A})<br /> \cdot (+i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi] \Psi)<br /> \}

FOIL:

\dfrac {\partial \rho}{\partial t}=\dfrac{-1}{i\hbar}<br /> \{ ( [\frac{1}{2m}(i\hbar i\hbar \nabla^2 + (-i\hbar) \nabla \cdot (\frac{q}{c} \mathbf{A})<br /> + (\frac{q}{c} \mathbf{A}) \cdot (-i\hbar) \nabla + \frac{q^2}{c^2} \mathbf{A}^2)<br /> + q\phi]\Psi^* ) \Psi \\<br /> - \Psi^*( [\frac{1}{2m}(i\hbar i\hbar \nabla^2 + i\hbar \nabla \cdot (\frac{q}{c} \mathbf{A})<br /> + (\frac{q}{c} \mathbf{A}) \cdot (i\hbar \nabla) + \frac{q^2}{c^2} \mathbf{A}^2)<br /> + q\phi] \Psi)<br /> \}

Multiply everything out:

\dfrac {\partial \rho}{\partial t}<br /> =\frac{-i\hbar}{2m}(\nabla^2 \Psi^*) \Psi<br /> + \frac{1}{2m} (\nabla \cdot \frac{q}{c} \mathbf{A}) \Psi^* \Psi<br /> + \frac{1}{2m} (\frac{q}{c} \mathbf{A}) \cdot (\nabla \Psi^*) \Psi<br /> + \frac{-1}{i\hbar} \frac{1}{2m} \frac{q^2}{c^2} \mathbf{A}^2 \Psi^* \Psi \\<br /> + \frac{-1}{i\hbar} \frac{1}{2m} q \phi \Psi^* \Psi \\<br /> + (\Psi^*) \frac{1}{2m} (i\hbar)(\nabla^2 \Psi)<br /> + (\Psi^*) \frac{1}{2m} \nabla \cdot (\frac{q}{c} \mathbf{A}) \Psi<br /> + (\Psi^*) \frac{1}{2m} (\frac{q}{c} \mathbf{A}) \cdot (\nabla \Psi)<br /> + \frac{1}{i\hbar} (\Psi^*) \frac{1}{2m} \frac{q^2}{c^2} \mathbf{A}^2 \Psi \\<br /> + \frac{1}{i\hbar} \frac{1}{2m}(\Psi^*)q\phi \Psi<br />

The terms containing \phi and \frac{q^2}{c^2} \mathbf{A}^2
cancel and there's a fact that \Psi \nabla^2 \Psi^* - \Psi^* \nabla^2 \Psi<br /> = \nabla \cdot(\Psi \nabla \Psi^* - \Psi^* \nabla \Psi), so

\dfrac {\partial \rho}{\partial t}<br /> = \frac{-i\hbar}{2m} \nabla \cdot (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi) \\<br /> + \frac{1}{2m} (\nabla \cdot \frac{q}{c} \mathbf{A}) \Psi^* \Psi<br /> + \frac{1}{2m} (\frac{q}{c} \mathbf{A}) \cdot (\nabla \Psi^*) \Psi<br /> + (\Psi^*) \frac{1}{2m} \nabla \cdot (\frac{q}{c} \mathbf{A}) \Psi<br /> + (\Psi^*) \frac{1}{2m} (\frac{q}{c} \mathbf{A}) \cdot (\nabla \Psi)

Note that of the 5 terms, the 2nd and 4th are the same, so

(1) \dfrac {\partial \rho}{\partial t}<br /> = \frac{-i\hbar}{2m} \nabla \cdot (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi) \\<br /> + \dfrac{q}{mc} (\nabla \cdot \mathbf{A}) \Psi^* \Psi<br /> + \dfrac{q}{2mc} \mathbf{A} \cdot (\Psi \nabla \Psi^*)<br /> + \dfrac{q}{2mc} \mathbf{A} \cdot (\Psi^* \nabla \Psi)

https://en.wikipedia.org/wiki/Probability_current tells us
that the final result should be \dfrac{\partial \rho}{\partial t}<br /> = - \nabla \cdot \mathbf{j} and that

\mathbf{j} = \dfrac{1}{2m} [(\Psi^* \mathbf{\hat{p}} \Psi<br /> - \Psi \mathbf{\hat{p}} \Psi^* ) - 2 \frac{q}{c} \mathbf{A} |\Psi|^2]

or using \mathbf{\hat{p}} = -i\hbar \nabla,

\mathbf{j} = \dfrac{1}{2m} [(\Psi^* (-i\hbar \nabla) \Psi<br /> - \Psi (-i\hbar \nabla) \Psi^* ) - 2 \frac{q}{c} \mathbf{A} |\Psi|^2]

\mathbf{j} = \dfrac{-i\hbar}{2m} (\Psi^* \nabla \Psi<br /> - \Psi \nabla \Psi^* ) - \dfrac{1}{2m} 2 \frac{q}{c} \mathbf{A} |\Psi|^2

\mathbf{j} = \dfrac{-i\hbar}{2m} (\Psi^* \nabla \Psi<br /> - \Psi \nabla \Psi^* ) - \dfrac{q}{mc} \mathbf{A} |\Psi|^2

Applying \dfrac{\partial \rho}{\partial t} = - \nabla \cdot \mathbf{j},

\dfrac{\partial \rho}{\partial t}<br /> = - \nabla \cdot [\dfrac{-i\hbar}{2m} (\Psi^* \nabla \Psi<br /> - \Psi \nabla \Psi^* ) - \dfrac{q}{mc} \mathbf{A} |\Psi|^2]

\dfrac{\partial \rho}{\partial t}<br /> = \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi<br /> - \Psi \nabla \Psi^* ) + \dfrac{q}{mc} \nabla \cdot<br /> (\mathbf{A} |\Psi|^2)

Apply an identity about \nabla operating on a scalar times a vector
at https://en.wikipedia.org/wiki/Vector_calculus_identities
\nabla \cdot (\phi \mathbf{B}) =<br /> \mathbf{B} \cdot \nabla \phi +<br /> \phi (\nabla \cdot \mathbf{B}) (I changed the letters),

\dfrac{\partial \rho}{\partial t}<br /> = \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi<br /> - \Psi \nabla \Psi^* )<br /> + \dfrac{q}{mc} (\mathbf{A} \cdot \nabla (\Psi^* \Psi)<br /> + (\Psi^* \Psi) (\nabla \cdot \mathbf{A}))

Product rule:

\dfrac{\partial \rho}{\partial t}<br /> = \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi<br /> - \Psi \nabla \Psi^* )<br /> + \dfrac{q}{mc} (\mathbf{A} \cdot (\Psi^* \nabla \Psi)<br /> + \mathbf{A} \cdot (\Psi \nabla \Psi^*)<br /> + (\Psi^* \Psi) (\nabla \cdot \mathbf{A}))

\dfrac{\partial \rho}{\partial t}<br /> = \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi<br /> - \Psi \nabla \Psi^* )<br /> + \dfrac{q}{mc} \mathbf{A} \cdot (\Psi^* \nabla \Psi)<br /> + \dfrac{q}{mc} \mathbf{A} \cdot (\Psi \nabla \Psi^*)<br /> + \dfrac{q}{mc} (\Psi^* \Psi) (\nabla \cdot \mathbf{A})

Rearrange some terms so that we can compare with equation (1):

\dfrac{\partial \rho}{\partial t}<br /> = \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi<br /> - \Psi \nabla \Psi^* )<br /> + \dfrac{q}{mc} (\Psi^* \Psi) (\nabla \cdot \mathbf{A})<br /> + \dfrac{q}{mc} \mathbf{A} \cdot (\Psi \nabla \Psi^*)<br /> + \dfrac{q}{mc} \mathbf{A} \cdot (\Psi^* \nabla \Psi)

Now we're very close to equation (1),

(1) \dfrac {\partial \rho}{\partial t}<br /> = \frac{-i\hbar}{2m} \nabla \cdot (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi) \\<br /> + \dfrac{q}{mc} (\nabla \cdot \mathbf{A}) \Psi^* \Psi<br /> + \dfrac{q}{2mc} \mathbf{A} \cdot (\Psi \nabla \Psi^*)<br /> + \dfrac{q}{2mc} \mathbf{A} \cdot (\Psi^* \nabla \Psi)

but are off by some factors of 2.
Do you see the error in my steps?
 
Physics news on Phys.org
In your "FOIL" step (see below), think about whether or not the Del operator circled in red should operate on ##\Psi^{*}## as well as ##\mathbf{A}##.
 

Attachments

  • Current density calculation.png
    Current density calculation.png
    5.8 KB · Views: 918
It works! "Incorporating the \Psi and \Psi^* first", before doing
the \nabla, creates a "6th term", that fills in the missing piece(s).
THANK YOU TSny!
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
Replies
14
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K