MHB Probability : minutes that customers get served

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Probability
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

The average time of customer service at the cash registers of a department store is $30$ people per hour. If a new customer arrives at the checkout, then calculate the probabilities:

a) to be served in less than 15 minutes

b) to need to be served from 6 to 8 minutes
a) Do we have Poisson disrtibution with $\lambda=30$ ?
But then we consider "minutes" instead of "number of customers".
Could you give me a hint ?

:unsure:
 
Physics news on Phys.org
a) 30 people per hour is 2 minutes per person. The wait time is exponentially distributed with this mean. Evaluate the probability that the wait time is less than 15 min given this distribution.

b) I'm not sure what the word "need" means here. If they mean find the probability the customer is served in 6-8 minutes it's just the CDF of the above mentioned distribution evaluated at 8 minutes same evaluated at 6 minutes.
 
romsek said:
a) 30 people per hour is 2 minutes per person. The wait time is exponentially distributed with this mean. Evaluate the probability that the wait time is less than 15 min given this distribution.

b) I'm not sure what the word "need" means here. If they mean find the probability the customer is served in 6-8 minutes it's just the CDF of the above mentioned distribution evaluated at 8 minutes same evaluated at 6 minutes.

How do we know that we have an exponential distribution? :unsure:
 
mathmari said:
How do we know that we have an exponential distribution? :unsure:

It's a property of the Poisson/Exponential distributions.

30 people an hr implies a Poisson distribution on the number of arrivals during a given period.

It's just a property that the time between Poisson arrivals has an exponential distribution.
 
romsek said:
It's a property of the Poisson/Exponential distributions.

30 people an hr implies a Poisson distribution on the number of arrivals during a given period.

It's just a property that the time between Poisson arrivals has an exponential distribution.

Ah ok!

So do we have the following?

a) $P(X<15)=1-e^{-2\cdot 15}$

b) $P(6\leq X\leq 8)=P(X\leq 8)-P(X\leq 6)=(1-e^{-2\cdot 8})-(1-e^{-2\cdot 6})$

Is that correct? :unsure:
 
mathmari said:
Is that correct? :unsure:

I believe so.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top