MHB Probability more than one claim filed?

  • Thread starter Thread starter schinb65
  • Start date Start date
  • Tags Tags
    Probability
AI Thread Summary
The discussion centers on calculating the probability of a policyholder filing more than one claim under an automobile policy, using a geometric series approach. The actuary assumes that the probability of filing claims follows the relation $p_{n+1} = \frac{1}{5} p_n$. The transition from the sum $\sum_{k=0}^{\infty}\frac{1}{5}^k p_0$ to $\frac{p_0}{1-\frac{1}{5}}$ is explained as a geometric series where $a = p_0$ and $r = \frac{1}{5}$. Participants also discuss the need to calculate $P[n>1]$ by considering $1 - P[n=0] - P[n=1]$. The conversation highlights the importance of understanding the underlying mathematical principles in probability modeling.
schinb65
Messages
12
Reaction score
0
In modeling the number of claims filed by an individual under an automobile policy
during a three-year period, an actuary makes the simplifying assumption that for all
integers n ≥ 0, $p_n+1 = \frac{1}{5} p_n$ , where $p_n$ represents the probability that the policyholder files $n$ claims during the period.
Under this assumption, what is the probability that a policyholder files more than one
claim during the period?

So my question is the solution which I have attached. How do we go from
$\sum_{k=0}^{\infty}\frac{1}{5}^kp_0$ to the next step $\frac{p_0}{1-\frac{1}{5}}$

Thank you.
 

Attachments

  • Picture 1.png
    Picture 1.png
    7.6 KB · Views: 90
Mathematics news on Phys.org
Re: Probability more then one claim filed?

schinb65 said:
In modeling the number of claims filed by an individual under an automobile policy
during a three-year period, an actuary makes the simplifying assumption that for all
integers n ≥ 0, $p_n+1 = \frac{1}{5} p_n$ , where $p_n$ represents the probability that the policyholder files $n$ claims during the period.
Under this assumption, what is the probability that a policyholder files more than one
claim during the period?

So my question is the solution which I have attached. How do we go from
$\sum_{k=0}^{\infty}\frac{1}{5}^kp_0$ to the next step $\frac{p_0}{1-\frac{1}{5}}$

Thank you.

Welcome to MHB, schinb65! :)

What you have is a so called geometric series:

$a+ar+ar^2+ar^3+ar^4+\cdots = \displaystyle\sum_{k=0}^\infty ar^k = \dfrac{a}{1-r}$​

In your case you have $a=p_0$ and $r=\frac 1 5$, so:

$p_0 + \frac 1 5 p_0 + (\frac 1 5)^2 p_0 + (\frac 1 5)^3 p_0 + (\frac 1 5)^4 p_0 + ... = \displaystyle\sum_{k=0}^{\infty} \left(\frac{1}{5}\right)^k p_0 = \dfrac{p_0}{1-\frac 1 5}$​
(Btw, I suspect you intended $p_{n+1} = \frac{1}{5} p_n$.)
 
Re: Probability more then one claim filed?

ILikeSerena said:
Welcome to MHB, schinb65! :)

What you have is a so called geometric series:

$a+ar+ar^2+ar^3+ar^4+\cdots = \displaystyle\sum_{k=0}^\infty ar^k = \dfrac{a}{1-r}$​

In your case you have $a=p_0$ and $r=\frac 1 5$, so:

$p_0 + \frac 1 5 p_0 + (\frac 1 5)^2 p_0 + (\frac 1 5)^3 p_0 + (\frac 1 5)^4 p_0 + ... = \displaystyle\sum_{k=0}^{\infty} \left(\frac{1}{5}\right)^k p_0 = \dfrac{p_0}{1-\frac 1 5}$​

(Btw, I suspect you intended $p_{n+1} = \frac{1}{5} p_n$.)

Hi ILikeSerena, :)

I can't spot an error in this but I don't see where you used the fact that we are calculating $P[n>1]$. I would say we need to solve it this way: $P[n>1]=1-P[n=0]-P[n=1]$. Is that what you did in fact?
 
Re: Probability more then one claim filed?

Jameson said:
Hi ILikeSerena, :)

I can't spot an error in this but I don't see where you used the fact that we are calculating $P[n>1]$. I would say we need to solve it this way: $P[n>1]=1-P[n=0]-P[n=1]$. Is that what you did in fact?

Hi Jameson ;)

The attachment in the OP contains the full solution including what you just mentioned.
I only clarified the step in it that schinb65 asked about.
 
Re: Probability more then one claim filed?

ILikeSerena said:
Hi Jameson ;)

The attachment in the OP contains the full solution including what you just mentioned.
I only clarified the step in it that schinb65 asked about.

(Headbang) Doh! Sorry about that. I just saw the full solution just before reading you reply. I'll try to be more observant in the future, haha. :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top