MHB Probability of a particular item not being assigned

  • Thread starter Thread starter ATroelstein
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
The discussion revolves around calculating the probability that none of the M cups receive any of the N green marbles when K total marbles are used. The initial calculations correctly identify the probabilities for each cup, leading to the conclusion that the probability for the Mth cup should be based on K - (M - 1) marbles remaining. However, the book presents a different formula, suggesting the last term should be based on K - M, which raises confusion. Participants in the discussion agree that the original reasoning appears accurate, indicating a potential error in the book's approach. The consensus is that the correct calculation should reflect the removal of marbles as cups are filled.
ATroelstein
Messages
15
Reaction score
0
Lets say I have M cups and K marbles. All these marbles are blue, except for N of them that are green. At random, I will select a marble and drop it in a cup. The marble will not be returned to the original set of marbles before the next marble is selected. I would like to know the probability that these M cups don't have any of the N green marbles after I drop a marble into each cup. For this, I know the probability that the first cup does get a green marble is $\frac{N}{K}$. Therefore the probability that the cup does not get a green marble is $1 - \frac{N}{K}$. The second cup now has a probability of $\frac{N}{K - 1}$ of getting a green marble, since we have one less marble to randomly select now, which gives if a probability of $1 - \frac{N}{K-1}$ of not having a green marble. Now if I put this all together, I would assume the probability that none of the M cups have a green marbles is the product of all these probabilities for each individual cup not having a green marble.

$(1 - \frac{N}{K}) * (1 - \frac{N}{K - 1}) * (1 - \frac{N}{K - 2}) * ... * (1 - \frac{N}{K - (M-1)})$

I have $K - (M-1)$ as the denominator in the last probability because for the Mth cup, $M - 1$ marbles have been removed from the original set of K marbles. My issue is, in the book I am looking at, it states the probability being

$(1 - \frac{N}{K}) * (1 - \frac{N}{K - 1}) * (1 - \frac{N}{K - 2}) * ... * (1 - \frac{N}{K - M})$

I'm confused as to why their last probability term is $(1 - \frac{N}{K - M})$ as to me it seems like this would be correct if we have $M + 1$ cups. Is there something that I'm missing about how this probability should be calculated? Thanks.
 
Mathematics news on Phys.org
ATroelstein said:
Lets say I have M cups and K marbles. All these marbles are blue, except for N of them that are green. At random, I will select a marble and drop it in a cup. The marble will not be returned to the original set of marbles before the next marble is selected. I would like to know the probability that these M cups don't have any of the N green marbles after I drop a marble into each cup. For this, I know the probability that the first cup does get a green marble is $\frac{N}{K}$. Therefore the probability that the cup does not get a green marble is $1 - \frac{N}{K}$. The second cup now has a probability of $\frac{N}{K - 1}$ of getting a green marble, since we have one less marble to randomly select now, which gives if a probability of $1 - \frac{N}{K-1}$ of not having a green marble. Now if I put this all together, I would assume the probability that none of the M cups have a green marbles is the product of all these probabilities for each individual cup not having a green marble.

$(1 - \frac{N}{K}) * (1 - \frac{N}{K - 1}) * (1 - \frac{N}{K - 2}) * ... * (1 - \frac{N}{K - (M-1)})$

I have $K - (M-1)$ as the denominator in the last probability because for the Mth cup, $M - 1$ marbles have been removed from the original set of K marbles. My issue is, in the book I am looking at, it states the probability being

$(1 - \frac{N}{K}) * (1 - \frac{N}{K - 1}) * (1 - \frac{N}{K - 2}) * ... * (1 - \frac{N}{K - M})$

I'm confused as to why their last probability term is $(1 - \frac{N}{K - M})$ as to me it seems like this would be correct if we have $M + 1$ cups. Is there something that I'm missing about how this probability should be calculated? Thanks.
I think it's the book that is wrong, not you.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
3K
  • · Replies 10 ·
Replies
10
Views
1K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K