MHB Probability of a particular item not being assigned

  • Thread starter Thread starter ATroelstein
  • Start date Start date
  • Tags Tags
    Probability
ATroelstein
Messages
15
Reaction score
0
Lets say I have M cups and K marbles. All these marbles are blue, except for N of them that are green. At random, I will select a marble and drop it in a cup. The marble will not be returned to the original set of marbles before the next marble is selected. I would like to know the probability that these M cups don't have any of the N green marbles after I drop a marble into each cup. For this, I know the probability that the first cup does get a green marble is $\frac{N}{K}$. Therefore the probability that the cup does not get a green marble is $1 - \frac{N}{K}$. The second cup now has a probability of $\frac{N}{K - 1}$ of getting a green marble, since we have one less marble to randomly select now, which gives if a probability of $1 - \frac{N}{K-1}$ of not having a green marble. Now if I put this all together, I would assume the probability that none of the M cups have a green marbles is the product of all these probabilities for each individual cup not having a green marble.

$(1 - \frac{N}{K}) * (1 - \frac{N}{K - 1}) * (1 - \frac{N}{K - 2}) * ... * (1 - \frac{N}{K - (M-1)})$

I have $K - (M-1)$ as the denominator in the last probability because for the Mth cup, $M - 1$ marbles have been removed from the original set of K marbles. My issue is, in the book I am looking at, it states the probability being

$(1 - \frac{N}{K}) * (1 - \frac{N}{K - 1}) * (1 - \frac{N}{K - 2}) * ... * (1 - \frac{N}{K - M})$

I'm confused as to why their last probability term is $(1 - \frac{N}{K - M})$ as to me it seems like this would be correct if we have $M + 1$ cups. Is there something that I'm missing about how this probability should be calculated? Thanks.
 
Mathematics news on Phys.org
ATroelstein said:
Lets say I have M cups and K marbles. All these marbles are blue, except for N of them that are green. At random, I will select a marble and drop it in a cup. The marble will not be returned to the original set of marbles before the next marble is selected. I would like to know the probability that these M cups don't have any of the N green marbles after I drop a marble into each cup. For this, I know the probability that the first cup does get a green marble is $\frac{N}{K}$. Therefore the probability that the cup does not get a green marble is $1 - \frac{N}{K}$. The second cup now has a probability of $\frac{N}{K - 1}$ of getting a green marble, since we have one less marble to randomly select now, which gives if a probability of $1 - \frac{N}{K-1}$ of not having a green marble. Now if I put this all together, I would assume the probability that none of the M cups have a green marbles is the product of all these probabilities for each individual cup not having a green marble.

$(1 - \frac{N}{K}) * (1 - \frac{N}{K - 1}) * (1 - \frac{N}{K - 2}) * ... * (1 - \frac{N}{K - (M-1)})$

I have $K - (M-1)$ as the denominator in the last probability because for the Mth cup, $M - 1$ marbles have been removed from the original set of K marbles. My issue is, in the book I am looking at, it states the probability being

$(1 - \frac{N}{K}) * (1 - \frac{N}{K - 1}) * (1 - \frac{N}{K - 2}) * ... * (1 - \frac{N}{K - M})$

I'm confused as to why their last probability term is $(1 - \frac{N}{K - M})$ as to me it seems like this would be correct if we have $M + 1$ cups. Is there something that I'm missing about how this probability should be calculated? Thanks.
I think it's the book that is wrong, not you.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top