MHB Probability of a Percent given a Percent

tizpan
Messages
3
Reaction score
0
I'm hoping that I can gain some insight from fellow users in how to start off a probability question when given a percent 'given that' and another percent.

For example, if an election is split into percentages of votes per party and you know the party allegiance percentages of the town, how can you devise the probability that a random townsperson voted a certain way?

There are two different wholes at play: the voting population and the amount of voting percentages within the party. I can't figure out where to start (Doh)
 
Mathematics news on Phys.org
tizpan said:
I'm hoping that I can gain some insight from fellow users in how to start off a probability question when given a percent 'given that' and another percent.

For example, if an election is split into percentages of votes per party and you know the party allegiance percentages of the town, how can you devise the probability that a random townsperson voted a certain way?

There are two different wholes at play: the voting population and the amount of voting percentages within the party. I can't figure out where to start (Doh)

I doubt that you can, first you don't know the turn-out, or the turn-out for each party as these may be different.

Also the basic assumptions on voting behaviour do not seem reasonable.

CB
 
That is where I am getting confused in starting this problem.

The details given are as follows: A certain town is made up of 38.6% brown haired people, 57.1% blondes and 4.3% redheads. In the last town mayor race, votes were cast by 43.1% of the brown haired people, 40.7% blondes, and 51.7% of redheads. If a mayoral race voter is chosen at random, what is the probability that they are a brown haired?

Instinctively, I would look at this as the P(of brown haired in the town) * P(of brown haired that voted). So, .386*.431 equaling .166366. Somehow I can't help but think that there is more that I need to consider.:confused:
 
tizpan said:
That is where I am getting confused in starting this problem.

The details given are as follows: A certain town is made up of 38.6% brown haired people, 57.1% blondes and 4.3% redheads. In the last town mayor race, votes were cast by 43.1% of the brown haired people, 40.7% blondes, and 51.7% of redheads. If a mayoral race voter is chosen at random, what is the probability that they are a brown haired?

Instinctively, I would look at this as the P(of brown haired in the town) * P(of brown haired that voted). So, .386*.431 equaling .166366. Somehow I can't help but think that there is more that I need to consider.:confused:

Bayes' theorem:

\[P(Br|V)=P(V|Br)P(Br)/P(V)\]

\(P(V|Br)=0.431\), \(P(Br)=0.386\),

\( \begin{aligned}P(V)&=P(V|Br)P(Br)+P(V|Bl)P(Bl)+P(V|R)P(R)\\&=0.431 \times 0.386+0.407 \times 0.571 + 0.517 \times 0.043 \approx 0.421 \end{aligned}\)

CB
 
That makes sense now, thank you Captain!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top