MHB Probability of Events A, B, C, D in a Uniform Probability Law

AI Thread Summary
Alice and Bob each select a number randomly between zero and two, following a uniform probability law where event probabilities are proportional to area. The discussion focuses on calculating the probabilities of various events: A (difference greater than 1/3), B (at least one number greater than 1/3), C (numbers equal), and D (Alice's number greater than 1/3). The joint probability density function (p.d.f.) is established as f(x,y) = 1/4 within the defined range. Key results include P(D) = 5/6 and P(B) = 35/36, with further calculations for P(A) pending. The approach emphasizes visualizing probabilities as areas within a 2x2 square.
nacho-man
Messages
166
Reaction score
0
Alice and bob each choose a number at rndom between zero and two. We assume a uniform probability law under which the probability of an event is proportional to it sarea. Consider the following events:

A: The magnitude of the difference of the two numbers is greater than 1/3
B: At least one of the numbers is greater than 1/3
C: The two numbers are equal
D: Alice's number is greater than 1/3

So, find $ P(A), P(B), P(A\cap B) , P(C), P(D), P(A\cap D)$
 
Mathematics news on Phys.org
nacho said:
Alice and bob each choose a number at rndom between zero and two. We assume a uniform probability law under which the probability of an event is proportional to it sarea. Consider the following events:

A: The magnitude of the difference of the two numbers is greater than 1/3
B: At least one of the numbers is greater than 1/3
C: The two numbers are equal
D: Alice's number is greater than 1/3

So, find $ P(A), P(B), P(A\cap B) , P(C), P(D), P(A\cap D)$

Let's give answers in increasing order of difficulty...

c) indicating with X and Y the two numbers the joint p.d.f. is...

$\displaystyle f (x,y) = \frac{1}{4}, 0 < x < 2,\ 0 < y < 2\ (1)$

... and 0 otherwise. The probability that X and Y are equal is the area of the segment y=x in the x,y plane... and the area of a segment is 0...

d) the marginal p.d.f. of X [the Alice's number...] is...

$\displaystyle f(x) = \frac{1}{2}, 0 < x < 2\ (2)$

... and 0 otherwise, so that...

$\displaystyle P \{ X > \frac{1}{3} \} = \int_{\frac{1}{3}}^{2} \frac{d x}{2} = \frac{5}{6}\ (3)$

b) taking into account what is written in c) we have that the requested probability is...

$\displaystyle P = 1 - \int_{0}^{\frac{1}{3}} \int_{0}^{\frac{1}{3}} \frac{d x\ d y}{4} = \frac{35}{36}\ (4)$

The point a) requires a little more effort and it will be attached in next post...

Kind regards

$\chi$ $\sigma$
 
nacho said:
Alice and Bob each choose a number at random between zero and two. We assume a uniform probability law under which the probability of an event is proportional to its area. Consider the following events:

A: The magnitude of the difference of the two numbers is greater than 1/3
B: At least one of the numbers is greater than 1/3
C: The two numbers are equal
D: Alice's number is greater than 1/3

So, find $ P(A), P(B), P(A\cap B) , P(C), P(D), P(A\cap D)$

The question suggests representing the probability of an event by an area. So take Alice's number to be the $x$-coordinate and Bob's number to be the $y$-coordinate, in a $2\times2$ square, as in the diagram. For part A, you want $|x-y|>\frac13$, so you must avoid the region shaded yellow in the diagram. The required probability is then the fraction of the square that is not shaded yellow. So it is the combined area of the two unshaded triangles, divided by the area of the whole square. The other parts of the question can be done in a similar way.
 

Attachments

  • prob.gif
    prob.gif
    5 KB · Views: 185
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top