MHB Probability of First Ball Drawn Red | Explanation Provided

  • Thread starter Thread starter Suvadip
  • Start date Start date
  • Tags Tags
    Probability
AI Thread Summary
The problem involves calculating the probability that the first ball drawn is red given that the second ball drawn is white, using conditional probability. The initial setup includes 5 red and 10 white balls, totaling 15. The probability of drawing a red ball first is 1/3, and if that occurs, the probability of then drawing a white ball is 5/7, leading to a combined probability of 5/21 for this scenario. Conversely, if a white ball is drawn first, the probability of drawing another white ball is 9/14, resulting in a total probability of 14/21 for drawing a white ball second. Ultimately, the conditional probability that the first ball is red given the second is white is calculated to be 5/14.
Suvadip
Messages
68
Reaction score
0
A box contains 5 red and 10 white balls. Two balls are drawn at random without replacement. What is the probability that first ball drawn is red given that the second one is white? I am confused how the colour of the second ball effects the probability of the first ball. Please help.
 
Mathematics news on Phys.org
Re: conditonal probability

suvadip said:
A box contains 5 red and 10 white balls. Two balls are drawn at random without replacement. What is the probability that first ball drawn is red given that the second one is white? I am confused how the colour of the second ball effects the probability of the first ball. Please help.

You want to find $$\mathcal{P}(R_1|W_2)=\frac{\mathcal{P}(R_1W_2)}{ \mathcal{P}(W_2)}$$

But you know $$\mathcal{P}(W_2)=\mathcal{P}(R_1W_2)+\mathcal{P}(W_1W_2)$$
 
Rather than using memorized formulas, you can think it out this way:

There are 5 red balls and 10 white balls, a total of 15 balls. The probability that a red ball is drawn first is 5/15= 1/3. If that happens, there are still 10 white balls but now only 14 balls total. The probability the next ball drawn is white is 10/14= 5/7. The probability "the first ball is red and the second is white" is (1/3)(5/7)= 5/21.

The probability that a white ball is drawn first is 10/15= 2/3. If that happens there are now 9 white balls and 14 balls total. The probabilty that second ball drawn is white is 9/14. The probability "the first ball drawn is white and the second is white" is (2/3)(9/14)= 3/7.

The total probability for "white ball drawn second" is 5/21+ 3/7= 5/21+ 9/7= 14/21= 2/3. The probability "first ball is red given that the second ball is white" is (5/21)/(2/3)= (5/21)(3/2)= 5/14. The probability "first ball is white given that the second ball is white" is (3/7)/(2/3)= (3/7)(3/2)= 9/14.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top