Probability of Rolling Sum of Die-Rolling

Click For Summary
SUMMARY

This discussion focuses on the probability of obtaining specific sums from rolling a standard 6-sided die multiple times. The probability of the number 2 appearing in the sequence of sums is calculated as \( \frac{7}{36} \). The probability of rolling a 6 is higher than that of rolling a 1006, with the asymptotic probability of any number occurring in the sequence converging to \( \frac{2}{7} \) as the number of rolls increases. The discussion also highlights the formula for calculating the probability of achieving a sum \( t \) after \( n \) rolls, which involves combinatorial terms and can be evaluated using Mathematica.

PREREQUISITES
  • Understanding of basic probability theory
  • Familiarity with combinatorial mathematics
  • Knowledge of Mathematica for computational evaluation
  • Concept of asymptotic behavior in probability distributions
NEXT STEPS
  • Explore the derivation of the formula for probability of sums in dice rolls
  • Learn how to implement combinatorial calculations in Mathematica
  • Investigate the concept of convergence in probability distributions
  • Study the implications of rolling multiple dice on probability outcomes
USEFUL FOR

Mathematicians, statisticians, educators, and anyone interested in probability theory and its applications in games of chance.

magneto1
Messages
100
Reaction score
0
I ran into this problem, and would like to see if there is something more elegant.

Suppose we have a sequence $a_1, a_2, \dotsc, a_n, \dotsc$ where $a_k$
is the (running) sum of rolling a standard 6-side die $k$ times.

E.g. What's the chance of saying the number $2$ appears in this sequence? There are two possibilities, rolling a $2$ on the first roll, so $a_1 = 2$, or rolling two $1$'s, so $a_1 = 1, a_2 = 2$. Therefore, the probability is $\frac 16 + \frac 1{36} = \frac 7{36}$.

The question now is what is more likely to occur in this sequence? The number $6$ or the number $1006$?

There are formula to determine the probability of getting a sum of $t$ after $n$ rolls of a $6$-sided die:
\[
p = \frac 1{6^n} \sum_{k=0}^n (-1)^k \binom{n}{k} \binom{t - 6t - 1}{n-1}.
\]
We can further reduce the upper limit of the summation from $n$, and utilize code/Mathematica to evaluate this. If the code is carried out, I find that it is more likely you will see a $6$ than seeing a $2$ or $1006$.

Is there a "cleaner" way to show this without doing the actual arithemtics?
 
Physics news on Phys.org
magneto said:
I ran into this problem, and would like to see if there is something more elegant.

Suppose we have a sequence $a_1, a_2, \dotsc, a_n, \dotsc$ where $a_k$
is the (running) sum of rolling a standard 6-side die $k$ times.

E.g. What's the chance of saying the number $2$ appears in this sequence? There are two possibilities, rolling a $2$ on the first roll, so $a_1 = 2$, or rolling two $1$'s, so $a_1 = 1, a_2 = 2$. Therefore, the probability is $\frac 16 + \frac 1{36} = \frac 7{36}$.

The question now is what is more likely to occur in this sequence? The number $6$ or the number $1006$?

There are formula to determine the probability of getting a sum of $t$ after $n$ rolls of a $6$-sided die:
\[
p = \frac 1{6^n} \sum_{k=0}^n (-1)^k \binom{n}{k} \binom{t - 6t - 1}{n-1}.
\]
We can further reduce the upper limit of the summation from $n$, and utilize code/Mathematica to evaluate this. If the code is carried out, I find that it is more likely you will see a $6$ than seeing a $2$ or $1006$.

Is there a "cleaner" way to show this without doing the actual arithemtics?
Let $p(n)$ denote the probability that the number $n$ occurs in the sequence $\{a_k\}.$ I doubt whether there is a "clean" way to find $p(n).$ The mean score for a roll of the die is $\frac72$. So the average gap between consecutive terms in the sequence $\{a_k\}$ is $\frac72$. It follows that the asymptotic probability of a number occurring in the sequence is $\frac27 \approx 0.2857$. In other words, $p(n) \to \frac27$ as $n\to\infty.$ For small values of $n$, you can calculate $p(n)$ fairly easily. In fact, for $1\leqslant n\leqslant6$ the formula is $p(n) = \dfrac{7^{n-1}}{6^n}.$ When $n=7$ it is no longer possible to reach that score with one roll of the die, and the probability drops quite substantially (which I found quite surprising and counter-intuitive). After that, it gets rapidly more complicated to calculate $p(n).$ For $1\leqslant n\leqslant12$ the values of $p(n)$ (rounded to four decimal places) are $$\begin{array}{r|cccccccccccccc} n&1&2&3&4&5& 6&7&8&9&10 &11&12&\ldots & \infty \\ \hline p(n) & .1667 & .1944 & .2269 & .2647 & .3088 & .3602 & .2536 & .2681 & .2804 & .2893 & .2934 & .2908 && .2857 \end{array}$$ It looks as though $p(n)$ is going to converge quite rapidly to its asymptotic value $\frac27$, so I guess that $p(1006)$ will be very close to $.2857$, and will certainly be less than $p(6).$
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K