MHB Probability of Rolling Sum of Die-Rolling

magneto1
Messages
100
Reaction score
0
I ran into this problem, and would like to see if there is something more elegant.

Suppose we have a sequence $a_1, a_2, \dotsc, a_n, \dotsc$ where $a_k$
is the (running) sum of rolling a standard 6-side die $k$ times.

E.g. What's the chance of saying the number $2$ appears in this sequence? There are two possibilities, rolling a $2$ on the first roll, so $a_1 = 2$, or rolling two $1$'s, so $a_1 = 1, a_2 = 2$. Therefore, the probability is $\frac 16 + \frac 1{36} = \frac 7{36}$.

The question now is what is more likely to occur in this sequence? The number $6$ or the number $1006$?

There are formula to determine the probability of getting a sum of $t$ after $n$ rolls of a $6$-sided die:
\[
p = \frac 1{6^n} \sum_{k=0}^n (-1)^k \binom{n}{k} \binom{t - 6t - 1}{n-1}.
\]
We can further reduce the upper limit of the summation from $n$, and utilize code/Mathematica to evaluate this. If the code is carried out, I find that it is more likely you will see a $6$ than seeing a $2$ or $1006$.

Is there a "cleaner" way to show this without doing the actual arithemtics?
 
Mathematics news on Phys.org
magneto said:
I ran into this problem, and would like to see if there is something more elegant.

Suppose we have a sequence $a_1, a_2, \dotsc, a_n, \dotsc$ where $a_k$
is the (running) sum of rolling a standard 6-side die $k$ times.

E.g. What's the chance of saying the number $2$ appears in this sequence? There are two possibilities, rolling a $2$ on the first roll, so $a_1 = 2$, or rolling two $1$'s, so $a_1 = 1, a_2 = 2$. Therefore, the probability is $\frac 16 + \frac 1{36} = \frac 7{36}$.

The question now is what is more likely to occur in this sequence? The number $6$ or the number $1006$?

There are formula to determine the probability of getting a sum of $t$ after $n$ rolls of a $6$-sided die:
\[
p = \frac 1{6^n} \sum_{k=0}^n (-1)^k \binom{n}{k} \binom{t - 6t - 1}{n-1}.
\]
We can further reduce the upper limit of the summation from $n$, and utilize code/Mathematica to evaluate this. If the code is carried out, I find that it is more likely you will see a $6$ than seeing a $2$ or $1006$.

Is there a "cleaner" way to show this without doing the actual arithemtics?
Let $p(n)$ denote the probability that the number $n$ occurs in the sequence $\{a_k\}.$ I doubt whether there is a "clean" way to find $p(n).$ The mean score for a roll of the die is $\frac72$. So the average gap between consecutive terms in the sequence $\{a_k\}$ is $\frac72$. It follows that the asymptotic probability of a number occurring in the sequence is $\frac27 \approx 0.2857$. In other words, $p(n) \to \frac27$ as $n\to\infty.$ For small values of $n$, you can calculate $p(n)$ fairly easily. In fact, for $1\leqslant n\leqslant6$ the formula is $p(n) = \dfrac{7^{n-1}}{6^n}.$ When $n=7$ it is no longer possible to reach that score with one roll of the die, and the probability drops quite substantially (which I found quite surprising and counter-intuitive). After that, it gets rapidly more complicated to calculate $p(n).$ For $1\leqslant n\leqslant12$ the values of $p(n)$ (rounded to four decimal places) are $$\begin{array}{r|cccccccccccccc} n&1&2&3&4&5& 6&7&8&9&10 &11&12&\ldots & \infty \\ \hline p(n) & .1667 & .1944 & .2269 & .2647 & .3088 & .3602 & .2536 & .2681 & .2804 & .2893 & .2934 & .2908 && .2857 \end{array}$$ It looks as though $p(n)$ is going to converge quite rapidly to its asymptotic value $\frac27$, so I guess that $p(1006)$ will be very close to $.2857$, and will certainly be less than $p(6).$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top