Probability of the error of type 2

Click For Summary

Discussion Overview

The discussion revolves around calculating the probability of a type II error in hypothesis testing, specifically in the context of a sample mean from a population with a known standard deviation. Participants explore the implications of failing to reject the null hypothesis and clarify the definitions and calculations related to type II error and power of the test.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents a calculation for the probability of a type II error based on a critical sample mean of 102.56, asserting that the probability is approximately 0.3897.
  • Another participant questions whether failing to reject the null hypothesis means that the null hypothesis is kept, suggesting that this occurs if the sample mean is less than 102.56.
  • Concerns are raised about the definition of type II error, with some participants asserting that it involves accepting the null hypothesis when it is actually false.
  • Clarifications are made regarding the critical value and its implications for hypothesis acceptance, with a focus on distinguishing between type II error and the power of the test.
  • Further calculations are proposed to redefine the type II error probability as the likelihood of observing a sample mean less than the critical value when the true mean is 102.

Areas of Agreement / Disagreement

Participants express uncertainty regarding the definitions and implications of type II error versus power, leading to a lack of consensus on the correct interpretation of the calculations presented. The discussion remains unresolved as participants explore different perspectives on the topic.

Contextual Notes

There are unresolved issues regarding the definitions of type II error and power, as well as the implications of critical values in hypothesis testing. Participants rely on specific assumptions about the distributions involved and the significance level.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have data of a sample of $100$ people from a population with standard deviation $\sigma=20$.

We consider the following test: \begin{align*}H_0 : \ \mu\leq 100 \\ H_1 : \ \mu>100\end{align*}

The real mean is $\mu=102$ and the significance level is $\alpha=0.1$.

I want to calculate the probability of the error of type 2. I have done the following:

The statistic function is: \begin{equation*}Z=\frac{\overline{X}-\mu}{\sigma_{\overline{X}}}=\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{\overline{X}-100}{\frac{20}{\sqrt{100}}}=\frac{\overline{X}-100}{\frac{20}{10}}=\frac{\overline{X}-100}{2}\end{equation*}
where $\overline{X}$ is the estimation of $\mu$.

For the significance level $\alpha=0.1$ the critical value is $Z_{c} = 1.28$ and the region of rejection of $Η_0$ is $R = \{Z\mid Z > 1.28\}$.

The critical value $Z_{c}$ corresponds to a critical value $\overline{X}_{c}$ such that \begin{equation*}P\left (Z>1.28\right )=P\left (\overline{X}>\overline{X}_c \mid \mu=100 , \sigma_{\overline{X}}=2\right ) =1-\alpha=0.9\end{equation*}

We can find the value of $\overline{X}_c$ solving th following equation: \begin{equation*}Z_c=1.28 \Rightarrow \frac{\overline{X}_c-100}{2}=1.28 \Rightarrow \overline{X}_c-100=2.56 \Rightarrow \overline{X}_c=102.56\end{equation*}

So incorrectly we fail to reject the null hypothesis if we take a sample mean greater than $102.56$.

The probability to take a sample mean greater than $102.56$ given $\mu=102$ and $\sigma_{\overline{X}}=2$, i.e. the probability of error of type II is \begin{align*}P\left (\overline{X}>102.56\mid \mu=102, \sigma_{\overline{X}}=2\right )&=P\left (Z>\frac{102.56-102}{2}\right )=P\left (Z>\frac{0.56}{2}\right )=P\left (Z>0.28\right )\\ & =1-P\left (Z\leq 0.28\right )=1-0.6103=0.3897\end{align*} Is everything correct? (Wondering)
 
Physics news on Phys.org
mathmari said:
We can find the value of $\overline{X}_c$ solving th following equation: \begin{equation*}Z_c=1.28 \Rightarrow \frac{\overline{X}_c-100}{2}=1.28 \Rightarrow \overline{X}_c-100=2.56 \Rightarrow \overline{X}_c=102.56\end{equation*}

So incorrectly we fail to reject the null hypothesis if we take a sample mean greater than $102.56$.

Hey mathmari!

If we fail to reject the null hypothesis, we keep the null hypothesis don't we?
Isn't that the case if we find a sample mean less than $102.56$? (Wondering)

mathmari said:
The probability to take a sample mean greater than $102.56$ given $\mu=102$ and $\sigma_{\overline{X}}=2$, i.e. the probability of error of type II is \begin{align*}P\left (\overline{X}>102.56\mid \mu=102, \sigma_{\overline{X}}=2\right )&=P\left (Z>\frac{102.56-102}{2}\right )=P\left (Z>\frac{0.56}{2}\right )=P\left (Z>0.28\right )\\ & =1-P\left (Z\leq 0.28\right )=1-0.6103=0.3897\end{align*}

Is everything correct?

I believe you have calculated the so called Power instead of the Type II error. (Worried)
 
Klaas van Aarsen said:
If we fail to reject the null hypothesis, we keep the null hypothesis don't we?
Isn't that the case if we find a sample mean less than $102.56$? (Wondering)

The error of type II is to accept the null hypothesis although it is wrong, isn't it?

I got stuck right now. We found the critival $\overline{X}$-value to be $102.56$ which is greater than $100$ and so we would accept the hypothesis $H_1$, or not? (Wondering)
 
mathmari said:
The error of type II is to accept the null hypothesis although it is wrong, isn't it?

Correct. (Nod)

mathmari said:
I got stuck right now. We found the critival $\overline{X}$-value to be $102.56$ which is greater than $100$ and so we would accept the hypothesis $H_1$, or not?

Not quite.

Let's denote the critical $\overline{X}$-value as $\overline{X_0}^c$ to avoid confusion.
Note that $\overline{X_0}^c$ is calculated based on the null hypothesis for a certain significance level and sample size.
Now if we take a sample $x$ and its mean $\overline x$ is greater than $\overline{X_0}^c$, then we accept the alternative hypothesis, don't we?
And if $\overline x$ is less than $\overline{X_0}^c$, then we keep the null hypothesis, don't we? (Thinking)

The Type II Error is the probability that a sample follows the alternative distribution, but has a mean so close to the null hypothesis that we keep the null hypothesis even though it is wrong.
In our case:
$$\beta = \text{Type II Error} = P(\overline X < \overline{X_0}^c \mid \mu = \mu_1 = 102)$$
where $\overline{X_0}^c$ is calculated based on the null hypothesis with $\mu=\mu_0=100$. (Thinking)
 
Klaas van Aarsen said:
Let's denote the critical $\overline{X}$-value as $\overline{X}^c$ to avoid confusion.
Now if we take a sample $x$ and its mean $\overline x$ is greater than $\overline{X}^c$, then we accept the alternative hypothesis, don't we?
And if $\overline x$ is less than $\overline{X}^c$, then we keep the null hypothesis, don't we? (Thinking)

The Type II Error is the probability that a sample follows the alternative distribution, but has a mean so close to the null hypothesis that we keep the null hypothesis even though it is wrong.
In our case:
$$\beta = \text{Type II Error} = P(\overline X < \overline X^c \mid \mu = \mu_1 = 102)$$
where $\overline X^c$ is calculated based on the null hypothesis with $\mu=\mu_0=100$. (Thinking)
Ah ok! So do we have the following? (Wondering)

\begin{equation*}\beta = P(\overline X < \overline X^c \mid \mu = \mu_1 = 102)=P\left (Z<\frac{102.56-102}{2}\right )=P\left (Z<\frac{0.56}{2}\right )=P\left (Z<0.28\right )=0.6103\end{equation*}
 
mathmari said:
Ah ok! So do we have the following?

\begin{equation*}\beta = P(\overline X < \overline X^c \mid \mu = \mu_1 = 102)=P\left (Z<\frac{102.56-102}{2}\right )=P\left (Z<\frac{0.56}{2}\right )=P\left (Z<0.28\right )=0.6103\end{equation*}

Yep. (Nod)
 
Klaas van Aarsen said:
Yep. (Nod)

Great! Thanks a lot! (Mmm)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
10
Views
3K
Replies
4
Views
2K