MHB Probability question from TV, cracking a phone password

  • Thread starter Thread starter gswani
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
SUMMARY

The discussion revolves around calculating the number of possible 4-digit passcodes based on the presence of finger smudges indicating three distinct digits (2, 4, and 6) with one digit potentially repeated. If one digit is confirmed to be repeated, the total combinations amount to 12. However, if the repeated digit is unknown, the total combinations rise to 36, surpassing the 24 combinations available with four distinct digits. The key factor influencing the outcome is the identification of the heaviest smudge, which indicates the repeated digit.

PREREQUISITES
  • Understanding of combinatorial mathematics
  • Familiarity with permutations and combinations
  • Basic knowledge of probability theory
  • Ability to analyze patterns in numerical data
NEXT STEPS
  • Study combinatorial mathematics to deepen understanding of permutations and combinations
  • Learn about probability theory and its applications in real-world scenarios
  • Explore techniques for analyzing patterns in data sets
  • Investigate the concept of smudge analysis in forensic science
USEFUL FOR

Mathematicians, computer scientists, forensic analysts, and anyone interested in the application of combinatorial logic in problem-solving.

gswani
Messages
1
Reaction score
0
I'm watching a TV show and it is explained that a teenager found a phone and figured out the password "using finger smudges". This means he determined which digits are in the passcode by looking at the smudges on the face of the phone. Assuming that the passcode is 4 numbers, this should mean 24 possibilities if the "smudges" indicate that four distinct numbers are used.

4 x 3 x 2 x 1 = 24

What I can't figure out is what if the phone only had a smudge on three numbers. So that would mean a 4-digit code made up of three numbers, one of them repeated. I feel like the answer is 18 but I don't know why. Let's say the numbers are 2, 4 and 6. If you happened to select the repeated number on the first try, the math would be:

3 x 3 x 2 x 1 = 18
1st#: 2, 4, 6, 6 (two of them are 6 for this example)
2nd#: 2, 4, 6, 6
3rd#: 2, 4, 6, 6
4th#: 2, 4, 6, 6

That would be 3 possibilities on the first number since there are only three options. Then for the second number, you would still have three options, and then two and one. But what if you selected one of the digits that doesn't repeat? Then it would be:

3 x 2 x 2 x 1 = 12
1st#: 2, 4, 6, 6 (two of them are 6 for this example too)
2nd#: 2, 4, 6, 6
3rd#: 2, 4, 6, 6
4th#: 2, 4, 6, 6

Obviously I could add another scenario where you choose 2, and 4 first and then you only have one number left for the last two options.

3 x 3 x 1 x 1 = 9

But there has to be a way to determine which of these is right. I'd like to know the math that backs this up. I hope this is interesting enough (and clear enough) to interest someone. Thanks in advance for taking the time.
 
Physics news on Phys.org
gswani said:
I'm watching a TV show and it is explained that a teenager found a phone and figured out the password "using finger smudges". This means he determined which digits are in the passcode by looking at the smudges on the face of the phone. Assuming that the passcode is 4 numbers, this should mean 24 possibilities if the "smudges" indicate that four distinct numbers are used.

4 x 3 x 2 x 1 = 24

What I can't figure out is what if the phone only had a smudge on three numbers. So that would mean a 4-digit code made up of three numbers, one of them repeated. I feel like the answer is 18 but I don't know why. Let's say the numbers are 2, 4 and 6. If you happened to select the repeated number on the first try, the math would be:

3 x 3 x 2 x 1 = 18
1st#: 2, 4, 6, 6 (two of them are 6 for this example)
2nd#: 2, 4, 6, 6
3rd#: 2, 4, 6, 6
4th#: 2, 4, 6, 6

That would be 3 possibilities on the first number since there are only three options. Then for the second number, you would still have three options, and then two and one. But what if you selected one of the digits that doesn't repeat? Then it would be:

3 x 2 x 2 x 1 = 12
1st#: 2, 4, 6, 6 (two of them are 6 for this example too)
2nd#: 2, 4, 6, 6
3rd#: 2, 4, 6, 6
4th#: 2, 4, 6, 6

Obviously I could add another scenario where you choose 2, and 4 first and then you only have one number left for the last two options.

3 x 3 x 1 x 1 = 9

But there has to be a way to determine which of these is right. I'd like to know the math that backs this up. I hope this is interesting enough (and clear enough) to interest someone. Thanks in advance for taking the time.
Hi gswani, and welcome to MHB!

There are two possible answers to your problem. To decide which of them is correct, your teenage sleuth is going to have to look more carefully at the three smudges on the phone. The key question is: is one of those smudges heavier than the other two? If so, you can guess that it must correspond to the repeated digit. Otherwise, any of the three digits could be the repeated one, and the answer will be three times as large.

Taking your example where the three digits are 2, 4 and 6, suppose that the 2 has the heavier smudge, so that it occurs twice. There are six possible places where the two 2s can occur in the password $****$, as follows: $$2\,2**,$$ $$2*2\,*,$$ $$2**\,2,$$ $$*\,2\,2\,*,$$ $$*\,2*2,$$ $$**2\,2.$$ For each of these there are two possible passwords, depending whether the $4$ comes before or after the $6$ in the remaining $*$ positions. That gives a total of 12 possible passwords.

But if we don't know which digit is repeated, that gives an additional 12 possible passwords with a repeated $4$, and 12 with a repeated $6$, for a total of 36 altogether.

That last result seems surprising, because there are more possible passwords with three digits (36) than there were with four digits (24).
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
7
Views
9K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K