Problem involving Ampere's Law and Understanding

  • Thread starter Thread starter kbarry2295
  • Start date Start date
  • Tags Tags
    Ampere's law Law
Click For Summary
SUMMARY

The discussion centers on applying Ampere's Law to a problem involving a long straight copper wire with a circular hole and a smaller wire. The key equation used is μ₀I_enc = ∫B·dl. The current density J is determined to be J = 1/π(R² - a²). The main challenge arises in calculating the magnetic field B at a specific point on the x-axis when a smaller wire replaces the hole. The correct answer is B = 0.5μ₀J(b - r), which the original poster struggles to derive due to confusion over the integration limits and the path of the Ampere loop.

PREREQUISITES
  • Ampere's Law
  • Understanding of magnetic fields and current density
  • Basic calculus for integration
  • Concept of symmetry in electromagnetic problems
NEXT STEPS
  • Study the derivation of Ampere's Law in different geometries
  • Learn about magnetic field calculations in cylindrical coordinates
  • Explore examples of current density in various conductor shapes
  • Review the application of Gauss's Law for electric fields as a comparison
USEFUL FOR

Students studying electromagnetism, physics educators, and anyone tackling advanced problems involving Ampere's Law and magnetic fields in conductive materials.

kbarry2295
Messages
3
Reaction score
0

Homework Statement


Hello,
physics.jpg

This is a multi-part problem but I am stuck on just the third part, but I am a little confused in general with Ampere's Law. I know that the equation is mu_0*Ienc=Integral of B dl, but this problem really confused me.

A long straight copper wire lies along the z axis and has a circular cross section of radius R. In addition, there is a circular hole of radius a running the length of the copper wire, parallel to the z axis. The center of thhe hole is located at x=b with a+b<R.

The first part was What is the current density J and the answer is that J=1/pi(R^2-a^2)

The second part said if the hole is not there but has the same current density J, which I was able to solve through Ampere's law and the answer is B=1/2 mu_0 J*r

Now the third part is where I have had troubles. It saws suppose the wire of radius R is not there, and in place of the hole there is a smaller circular wire of radius a, with center at x=b, carrying the same current density J but into the page. What would the magnetic field be on the x-axis at a distance b<r<a+b from the origin, inside the smaller wire?

Homework Equations



Amperes Law
Integral of Bdl= current enclosed * mu_0[/B]

The Attempt at a Solution



Alright, so my thoughts on this problem were to ignore the large copper wire loop like it said, and I drew a Ampere loop inside the smaller circle. On the left side of Ampere's law is B*2pir.
On the right hand side, Ienc= to the integral of Jda, but J is claimed to be the same so I can take that out of the integral, and then I just have the integral of da.

Now, I set up the integration to go from the middle of the small loop, which is B, to my Ampere Loop, which is R, to get a current enclosed of Jpi(r-b)^2 and I set that equal to the other side. But I am not getting the right answer which my textbook says it is B=0.5(mu_0)J(b-r). I am not really concerned with the direction at this point, more on where am I messing up in my thinking of Ampere's Law and why am I not getting to this same answer? Any help or suggestions is greatly appreciated!
 
Physics news on Phys.org
Hello kbarry2295. Welcome to PF!
You get access to various symbols by clicking on the Σ in the green strip above the message box.

kbarry2295 said:

Homework Statement


Hello,

[ ATTACH=full]91897[/ATTACH]
This is a multi-part problem but I am stuck on just the third part, but I am a little confused in general with Ampere's Law. I know that the equation is mu_0*Ienc=Integral of B dl, but this problem really confused me.

A long straight copper wire lies along the z axis and has a circular cross section of radius R. In addition, there is a circular hole of radius a running the length of the copper wire, parallel to the z axis. The center of thhe hole is located at x=b with a+b<R.

The first part was What is the current density J and the answer is that J=1/pi(R^2-a^2)

The second part said if the hole is not there but has the same current density J, which I was able to solve through Ampere's law and the answer is B=1/2 mu_0 J*r
I suppose this second part actually asked for the magnetic field at a distance, r, from the z-axis, where 0 ≤ r ≤ R .

Now the third part is where I have had troubles. It says suppose the wire of radius R is not there, and in place of the hole there is a smaller circular wire of radius a, with center at x=b, carrying the same current density J but into the page. What would the magnetic field be on the x-axis at a distance b<r<a+b from the origin, inside the smaller wire?

Homework Equations



Amperes Law
Integral of Bdl= current enclosed * mu_0[/B]

The Attempt at a Solution



Alright, so my thoughts on this problem were to ignore the large copper wire loop like it said, and I drew a Ampere loop inside the smaller circle. On the left side of Ampere's law is B*2pir.
On the right hand side, Ienc= to the integral of Jda, but J is claimed to be the same so I can take that out of the integral, and then I just have the integral of da.

Now, I set up the integration to go from the middle of the small loop, which is B, to my Ampere Loop, which is R, to get a current enclosed of Jpi(r-b)^2 and I set that equal to the other side. But I am not getting the right answer which my textbook says it is B=0.5(mu_0)J(b-r). I am not really concerned with the direction at this point, more on where am I messing up in my thinking of Ampere's Law and why am I not getting to this same answer? Any help or suggestions is greatly appreciated!
For the small wire, the path for your integral should be a circle centered on the axis of the small wire.
 
Hello, thank you. I am still a little confused because wouldn't my circle be entirely inside the small wire? The initial circle that is in the picture is what I did for the first part.I set up the right side of the equation by μ_0∫J2πrdr by taking integration limits from b to r, and then divided by 2πr, but I am not getting the answer of 1/2μ_0*J(b-r). Am I missing something?
Thank you!
 
kbarry2295 said:
Hello, thank you. I am still a little confused because wouldn't my circle be entirely inside the small wire?
Yes. They might not have asked this very clearly, but ... They ask for the magnetic field at a point on the x-axis with r between b and b+a. r is the distance from the z-axis. That puts you at a point on the x-axis anywhere from the center of the hollow region (small wire) to its right hand edge.

Much like using Gauss's Law for E-field, Ampere's Law is only useful for computing the B-field when taking advantage of the symmetry of the situation. You need to integrate over a path on which the magnitude of the B-field is constant as well as being suitably oriented to the path.

The initial circle that is in the picture is what I did for the first part.I set up the right side of the equation by μ_0∫J2πrdr by taking integration limits from b to r, and then divided by 2πr, but I am not getting the answer of 1/2μ_0*J(b-r). Am I missing something?
Thank you!
 
Thanks!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
Replies
10
Views
2K
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K