MHB Problem involving m-tail of a sequence

  • Thread starter Thread starter issacnewton
  • Start date Start date
  • Tags Tags
    Sequence
Click For Summary
The discussion revolves around proving that if two sequences \(X\) and \(Y\) converge, then the m-tail of \(X\) multiplied by \(Y\) also converges. The initial proof presented incorrectly assumes that the convergence of \(XY\) implies the convergence of \(X_mY\) without additional conditions. A counterexample is provided where sequences converge but their m-tail product diverges, highlighting the need for specific conditions. Participants clarify the misunderstanding regarding the multiplication of sequences and the correct interpretation of the limits involved. The conclusion emphasizes the necessity of revising the proof to account for these nuances.
issacnewton
Messages
1,035
Reaction score
37
HelloI want to prove the following.
Let \(X\) and \(Y\) be two sequences,and \(XY\) converges. Then prove that
\(X_mY\) also converges,where
\[ X_m = \mbox{ m-tail of X } = (x_{m+n}\;:\; n\in \mathbb{N}) \]
Here is my proof.
let \(\lim\;(XY) = a \) . Then we have
\[ \forall \varepsilon >0\; \exists K_1 \in \mathbb{N} \;\forall n\geqslant K_1 \]
\[ |x_ny_n - a| < \varepsilon \]
Now let \(K = \max(K_1,\; m+1) \). The \( \forall n \geqslant K \) we have
\[|x_n y_n - a| < \varepsilon \].
But now all the \( (x_n) \) terms are values from the sequence \(X_m\). So
we have proven that
\[ \forall \varepsilon >0 \;\exists K \in \mathbb{N} \;\forall n\geqslant K \]
\[ |x_ny_n - a| < \varepsilon \]
where \( x_n\) values are from sequence \(X_m\). This proves that
\[ \lim(X_m Y) = a \]which proves that \(X_mY\) also converges. Let me know if this is right
Thanks
 
Physics news on Phys.org
IssacNewton said:
I want to prove the following.
Let \(X\) and \(Y\) be two sequences, and \(XY\) converges. Then prove that
\(X_mY\) also converges,where
\[ X_m = \mbox{ m-tail of X } = (x_{m+n}\;:\; n\in \mathbb{N}) \]
This result is not true unless the sequences satisfy some additional conditions. For example, suppose that the sequences $X$ and $Y$ are given by $$X = (0,1,0,1,0,1,0,1,\ldots), \qquad Y = (1,0,2,0,3,0,4,0,\ldots).$$ Then the sequence $XY$ consists entirely of zeros, and therefore converges. But if $m$ is an odd number then the sequence $X_mY$ is the same as $Y$, and it diverges.
 
I think that should be $$X_m Y_m $$ .
 
Thanks Opalg

I see the mistake. But I am trying to see which step in my proof fails. I was trying to prove this result for using in another proof. And I just checked that another problem and it says that \(X\) does converge to some non zero number.

So which step fails in my proof.

Thanks
 
IssacNewton said:
So
we have proven that
\[ \forall \varepsilon >0 \;\exists K \in \mathbb{N} \;\forall n\geqslant K \]
\[ |x_ny_n - a| < \varepsilon \]
where \( x_n\) values are from sequence \(X_m\). This proves that
\[ \lim(X_m Y) = a \]
The sequence $(x_ny_n)_{n=1}^\infty$ is $XY$ and not $X_mY$, assuming I interpret multiplication of sequences right. Then $X_mY$ is $(x_{m+n}y_n)_{n=1}^\infty$.
 
Hello Makarov,

Like I said, I made mistake in stating the problem. Thanks for pointing that out.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 17 ·
Replies
17
Views
1K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K