Problem n. 7 chapter 4 Eisberg Resnick "Quantum Physics"

  • Thread starter Thread starter baffetto59
  • Start date Start date
  • Tags Tags
    problem
Click For Summary
SUMMARY

The forum discussion centers on Problem 7 from Chapter 4 of "Quantum Physics" by Eisberg and Resnick, specifically regarding the calculation of the number of α particles scattered by an angle Θ or greater in Rutherford scattering. The correct formula derived is N = (1/(4πε₀)²)(zZe²/Mv²)²πIρt cot²(Θ/2). Participants identified discrepancies in the initial attempts, noting an excess factor of 4π in the numerator and a missing factor of 2² in the denominator compared to the book's equation. The integration process and the use of the Rutherford formula were also discussed in detail.

PREREQUISITES
  • Understanding of Rutherford scattering principles
  • Familiarity with integral calculus
  • Knowledge of LaTeX for formatting equations
  • Basic concepts of quantum physics as presented in Eisberg and Resnick's textbook
NEXT STEPS
  • Review the derivation of the Rutherford scattering formula
  • Study integral calculus techniques relevant to physics problems
  • Practice formatting equations in LaTeX for clarity in scientific communication
  • Explore additional problems in "Quantum Physics" by Eisberg and Resnick to reinforce understanding
USEFUL FOR

Students of quantum physics, educators teaching quantum mechanics, and researchers involved in particle physics who require a solid understanding of scattering theory and mathematical derivations.

baffetto59
Messages
4
Reaction score
4
Homework Statement
the solution is not the same stated by the authors. Asking help about
Relevant Equations
integral
a
 

Attachments

Physics news on Phys.org
baffetto59 said:
Homework Statement: the solution is not the same stated by the authors. Asking help about
Relevant Equations: integral
Please state the problem exactly as written and post it here in LaTeX (see the guide below) so readers don't have to open an attachment. To receive help, you also need to display your attempted solution.
 
  • Like
Likes   Endorsed by: Albertus Magnus and hutchphd
\documentclass{article}

\title {Problem n. 7 chapter 4 Eisberg Resnick "Quantum Physics"}
\usepackage{graphicx}
\graphicspath{ {./images/} }
\begin{document}
\maketitle
\begin{description}
\item Show that the number of $\alpha$ particles scattered by an angle $\Theta$ or greater in Rutherford scattering is
\item $(\frac{1}{4\pi\epsilon_0})^2\pi I\rho t(\frac{zZe^2}{Mv^2})^2\cot^2(\Theta/2)$\space(1)
\item SOLUTION
\item starting from Rutherford formula dN=$(\frac{1}{4\pi\epsilon_0})^2\pi I\rho t(\frac{zZe^2}{Mv^2})^2\frac{1}{\sin^4(\Theta/2)}d\Omega$ \space(1)
\item $d\Omega=2\pi\sin(\Theta)d\Theta$
\item integrate (1) from $\Theta$ to $\pi$
\item N=$(\frac{1}{4\pi\epsilon_0})^2\pi I\rho t(\frac{zZe^2}{Mv^2})^2 \int_\Theta^\pi\frac{2\pi\sin(\Theta)d\Theta}{\sin^4(\Theta/2)}$
\item let u=$\Theta/2$\space;\space$d\Theta=2du$\space;\space$\sin(\Theta)=2\sin(\Theta/2)\cos(\Theta/2)$
\item =$(\frac{1}{4\pi\epsilon_0})^2\space 8\pi^2I\rho t(\frac{zZe^2}{Mv^2})^2 \int\frac{\sin(u)\cos(u)}{\sin^4(u)}du$
\item =$(\frac{1}{4\pi\epsilon_0})^2\space 8\pi^2I\rho t(\frac{zZe^2}{Mv^2})^2 \int\frac{\cos(u)}{\sin^3(u)}du$
\item =$(\frac{1}{4\pi\epsilon_0})^2\space 8\pi^2I\rho t(\frac{zZe^2}{Mv^2})^2 \int\frac{d\sin(u)}{\sin^3(u)}$
\item =$(\frac{1}{4\pi\epsilon_0})^2\space 8\pi^2I\rho t(\frac{zZe^2}{Mv^2})^2 (-\frac{1}{2})\frac{1}{\sin^2(\Theta/2)}\mid^\pi_\Theta$
\item =$(\frac{1}{4\pi\epsilon_0})^2\space 8\pi^2I\rho t(\frac{zZe^2}{Mv^2})^2 (-\frac{1}{2})(1-\frac{1}{\sin^2(\Theta/2)})$
\item =$(\frac{1}{4\pi\epsilon_0})^2\space 8\pi^2I\rho t(\frac{zZe^2}{Mv^2})^2 (\frac{1}{2})(\frac{1-sin^2(\Theta/2}{\sin^2(\Theta/2)})$
\item =$\frac{1}{4\epsilon_0^2}\space I \rho t(\frac{zZe^2}{Mv^2})^2\cot^2(\Theta/2)$

\end{description}
\includegraphics{scattering}
\end{document}
 
Yeah, well, that's not what @renormalize meant :smile:

But when I compare your
starting from Rutherford formula $$dN=\left (\frac{1}{4\pi\epsilon_0}\right )^2\;\pi I\rho t \left (\frac{zZe^2}{Mv^2}\right )^2\;\frac{1}{\sin^4(\Theta/2)}d\Omega$$
with the book:$$
N(\Theta)\, d\Theta =\left(\frac{1}{4\pi\epsilon_0}\right )^2\;\left(\frac{zZe^2}{2Mv^2}\right )^2\;\frac{ I\rho t\; 2\pi \sin\Theta\ d\Theta}{\sin^4(\Theta/2)} \tag {4-7}$$
I see you have a factor ##4\pi ## too many.

##\ ##
 
Last edited:
Re ##\LaTeX##: the button 'LaTex Guide' at the lower left gets you started. In PF you can insert formulas (in-line math and displayed math), but not complete documents.

##\ ##
 
  • Like
Likes   Endorsed by: SanderStols

Problem n. 7 chapter 4 Eisberg Resnick "Quantum Physics"}​

Show that the number of ##\alpha## particles scattered by an angle ##\Theta## or greater in Rutherford scattering is
$$\left (\frac{1}{4\pi\epsilon_0}\right)^{\!2}\pi I\rho t \left (\frac{zZe^2}{Mv^2}\right)^{\!2}\cot^2(\Theta/2)
$$

SOLUTION​

starting from Rutherford formula $$dN=\left (\frac{1}{4\pi\epsilon_0}\right )^{\!2}\left(\frac{zZe^2}{2Mv^2}\right )^{\!2} I\rho t \;\frac{d\Omega}{\sin^4(\theta/2} \tag{4-7}
$$ with ##d\Omega=2\pi\sin(\Theta)d\Theta\ . \ \ ##Integrate ##(4{\text -}7)## from ##\Theta## to ##\pi##: $$

N=\left (\frac{1}{4\pi\epsilon_0}\right )^{\!2}\;\left (\frac{zZe^2}{Mv^2}\right )^{\!2}\;\frac{ \pi I\rho t}{2}\; \int_\Theta^\pi\frac{sin(\theta)d\theta}{\sin^4(\theta/2)}
$$ let ##u=\theta/2\space;\space d\theta=2du\space;\space\sin(\Theta)=2\sin(\Theta/2)\cos(\Theta/2)\ \ \Rightarrow ## $$
\begin{align*}
\int_\Theta^\pi\frac{sin(\theta)d\theta}{\sin^4(\theta/2)}&=
4\int_{\Theta/2}^{\pi/2}\frac{\sin u\cos u \, du}{\sin^4 u}\\ \ \\ &=\
\left . \frac{-2}{\sin^2(u)}\ \right |_{\Theta/2}^{\pi/2} \ = -2 \left (1-\frac {1}{\sin^2(\Theta/2)}\right )
= 2\cot^2(\Theta/2)
\end{align*}
$$so that $$N = \left (\frac{1}{4\pi\epsilon_0}\right )^{\!2}\;\left (\frac{zZe^2}{Mv^2}\right )^{\!2}\; \pi I\rho t\; \cot^2(\Theta/2)\ .$$as desired,

:wink: just practicing my ##\TeX## -- the answer was given away in #4 already

##\ ##
 
BvU said:
Yeah, well, that's not what @renormalize meant :smile:

But when I compare your

with the book:$$
N(\Theta)\, d\Theta =\left(\frac{1}{4\pi\epsilon_0}\right )^2\;\left(\frac{zZe^2}{2Mv^2}\right )^2\;\frac{ I\rho t\; 2\pi \sin\Theta\ d\Theta}{\sin^4(\Theta/2)} \tag {4-7}$$
I see you have a factor ##4\pi ## too many.

##\ ##
$d\Omega=2\pi\sin(\Theta)d\Theta$
It's coherent
 
Please use double-$$ signs for a display equation or double-## signs for an in-line equation, like $$d\Omega=2\pi\sin(\Theta)d\Theta$$:$$d\Omega=2\pi\sin(\Theta)d\Theta$$
 
baffetto59 said:
$d\Omega=2\pi\sin(\Theta)d\Theta$
It's coherent
No. It's wrong.

again: your
starting from Rutherford formula $$dN=(\frac{1}{4\pi\epsilon_0})^2\pi I\rho t(\frac{zZe^2}{Mv^2})^2\frac{1}{\sin^4(\Theta/2)}d\Omega$$
has a ##\pi## too many in the numerator and misses a ##2^2## in the denominator when compared to ##(4{\text-}7)## in the book.

##\ ##
 
  • #10
Yes, thanks. I started from wrong formula.
 
  • Like
Likes   Endorsed by: BvU

Similar threads

Replies
2
Views
2K
Replies
3
Views
579
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K