How to Derive g(x) from f(x) Using the Möbius Function?

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on deriving the function g(x) from f(x) using the Möbius function. It establishes that if f(x) is defined as the sum of g(x/n) for n from 1 to the floor of x, then g(x) can be expressed as a sum involving the Möbius function, specifically g(x) = ∑(μ(n) * f(x/n)) for n from 1 to the floor of x. The Möbius function, μ(n), plays a crucial role in this transformation, allowing for the inversion of the summation process. Ackbach provided a correct solution to the problem, demonstrating the application of these mathematical concepts.

PREREQUISITES
  • Understanding of the Möbius function, μ(n)
  • Familiarity with summation notation and floor functions
  • Basic knowledge of real-valued functions and their properties
  • Experience with mathematical proofs and transformations
NEXT STEPS
  • Study the properties and applications of the Möbius function in number theory
  • Learn about summation techniques in mathematical analysis
  • Explore the concept of inverse functions and their derivations
  • Investigate related problems in mathematical series and transformations
USEFUL FOR

Mathematicians, students of advanced calculus, and anyone interested in number theory and functional analysis will benefit from this discussion.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $f,g : \Bbb R \to \Bbb R$ such that $$f(x) = \sum_{n =1}^{\lfloor x\rfloor} g\left(\frac{x}{n}\right)$$ Show that $$g(x) = \sum_{n = 1}^{\lfloor x\rfloor} \mu(n)\, f\left(\frac{x}{n}\right)$$ where $\mu(n)$ is the Möbius function.-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was solved correctly by Ackbach. You can read his solution below.

There is a proof of this on the Möbius Inversion Formula wiki page, but there are a few steps that are lacking in details, so I will add some value there.

First of all, we note that
$$\sum_{d|n}\mu(d)=i(n),$$
where
$$i(n)=\begin{cases}1,&\; n=1\\0,&\;\text{otherwise}\end{cases}.$$

Secondly, we use the Iverson convention that [condition] is the indicator function of the condition, being $1$ if the condition is true, and $0$ if it is false. Also note that we use the convention that if $x$ is a real number, then
$$\sum_{i=1}^xf(i)=\sum_{i=1}^{\lfloor x\rfloor}f(i);$$
that is, the sum is understood to run over integers only, and we round down on the upper end.

Then we expand out the RHS of what we are to prove:
\begin{align*}
\sum_{n=1}^{x}\mu(n)\,f\!\left(\frac{x}{n}\right)
&=\sum_{n=1}^{x}\mu(n)\sum_{m=1}^{x/n}g\!\left(\frac{x}{mn}\right)\qquad \text{(Let $r=mn.$)} \\
&=\sum_{n=1}^{x}\mu(n)\sum_{r=n}^{x}g\!\left(\frac{x}{r}\right).
\end{align*}
Now, we would like to interchange the order of summation, but the problem is that the inner sum currently depends on $n$. If we include the condition $[r==mn],$ we can let the inner sum start at $1:$
\begin{align*}
\sum_{n=1}^{x}\mu(n)\,f\!\left(\frac{x}{n}\right)
&=\sum_{n=1}^{x}\mu(n)\sum_{r=1}^{x}[r==mn]\,g\!\left(\frac{x}{r}\right) \\
&=\sum_{r=1}^{x}g\!\left(\frac{x}{r}\right)\sum_{n=1}^{x}\mu(n)[r==mn] \\
&=\sum_{r=1}^{x}g\!\left(\frac{x}{r}\right)\sum_{n|r}\mu(n) \\
&=\sum_{r=1}^{x}g\!\left(\frac{x}{r}\right)i(r) \\
&=g(x),
\end{align*}
as required.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K