Consider the summation ∑,i=0,n (t^(n-i))*e^(-st) evaluated from zero to infinity.(adsbygoogle = window.adsbygoogle || []).push({});

You could break down the sum into: (t^(n))*e + (t^(n-1))*e + (t^(n-1))*e + ... + (t^(n-n))*e ; where e = e^(-st)

To evaluate this, notice that all terms will go to zero when evaluated at infinity

However, when evaluated at zero, notice the last term of the summation; when i=n : (t^(0))*e^(-st)

(t^0) is equivalent to one so we could rewrite as (1). When evaluating the last term at zero, then, we obtain (1) from the e^(-st) term. But, if you think of (1) as t^0, evaluating the last term at zero will give you 0^0, or which cannot be evaluated.

My question is, how do we handle a situation like this? I can change (t^0) to (1) and then evaluate the bounds; or leave it as it is (t^0), and find that evaluating the bound at zero creates an indeterminant value.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Problem when evaluating bounds...Is the result 1 or 0^0?

Tags:

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**