Problem with notation of matrix elements

  • Context: Undergrad 
  • Thread starter Thread starter Lambda96
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on the interpretation of matrix notation, specifically Einstein notation, in the context of the Frobenius product and complex scalar products. Participants clarify that the notation ##A_{\quad i}^j## and ##A_i^{\quad j}## represents matrix elements where indices indicate summation over specific dimensions. The conversation highlights the importance of understanding this notation for proper application in linear algebra and physics, particularly in proving properties like hermitian symmetry.

PREREQUISITES
  • Understanding of matrix operations and linear algebra concepts
  • Familiarity with the Frobenius product and its properties
  • Knowledge of complex numbers and scalar products
  • Basic grasp of Einstein summation convention
NEXT STEPS
  • Study the Einstein summation convention in detail
  • Learn about the properties of the Frobenius product
  • Explore hermitian matrices and their significance in linear algebra
  • Review complex scalar products and their applications in physics
USEFUL FOR

Students in mathematics or physics, particularly those studying linear algebra, matrix theory, or anyone needing clarification on advanced matrix notation and its applications.

Lambda96
Messages
233
Reaction score
77
TL;DR
What does this notation ##A_{\quad i}^j## and ##A_i^{\quad j}## mean?
Hi,

In one of my assignments, we had to prove that the Frobenius product corresponds to a complex scalar product. For one, we had to prove that the Frobenius product is hermitian symmetric.

I have now received the solution to the problem, and unfortunately I do not understand the notation for the individual matrix elements. I only know the notation ##a_{ij}## but what does it mean when one of the indices is written with a space of A or B, what is this space about? What should be the row and what the column in this kind of notation?

Here is the solution

Bildschirmfoto 2023-07-20 um 15.45.35.png
 
Physics news on Phys.org
Lambda96 said:
TL;DR Summary: What does this notation ##A_{\quad i}^j## and ##A_i^{\quad j}## mean?

Hi,

In one of my assignments, we had to prove that the Frobenius product corresponds to a complex scalar product. For one, we had to prove that the Frobenius product is hermitian symmetric.

I have now received the solution to the problem, and unfortunately I do not understand the notation for the individual matrix elements. I only know the notation ##a_{ij}## but what does it mean when one of the indices is written with a space of A or B, what is this space about? What should be the row and what the column in this kind of notation?

Here is the solution

View attachment 329456

It is called Einstein notation or Einstein summation. Physicists use it all the time.
https://en.wikipedia.org/wiki/Einstein_notation

You can deconstruct it by the image you posted.
\begin{align*}
(A^\dagger B)_{ij}&=\sum_{k=1}^n (A^\dagger )_{ik}\cdot B_{kj} =\sum_{k=1}^n (\overline{A_{ki}})\cdot B_{kj}\\
\operatorname{trace}(A^\dagger B)&=\sum_{p=1}^n (A^\dagger B)_{pp}\\
&=\sum_{p=1}^n \left(\sum_{k=1}^n (\overline{A})_{kp}\cdot B_{kp}\right)\\
&=\sum_{j=1}^n \left(\sum_{i=1}^n (\overline{A})_{ij}\cdot B_{ij}\right)\\
&= (\overline{{A_j}^i})\cdot {B^j}_i
\end{align*}

It is an abbreviation for the summation. Summed is over the indices that occur on top and at the bottom, here twice: sum over ##i## and sum over ##j##.
 
  • Like
Likes   Reactions: Lambda96 and PeroK
Lambda96 said:
TL;DR Summary: What does this notation ##A_{\quad i}^j## and ##A_i^{\quad j}## mean?

Hi,

In one of my assignments, we had to prove that the Frobenius product corresponds to a complex scalar product. For one, we had to prove that the Frobenius product is hermitian symmetric.

I have now received the solution to the problem, and unfortunately I do not understand the notation for the individual matrix elements. I only know the notation ##a_{ij}## but what does it mean when one of the indices is written with a space of A or B, what is this space about? What should be the row and what the column in this kind of notation?

Here is the solution

View attachment 329456
If in an assignment you encounter a notation that you have never seen before, then there must be a serious disconnection between your course syllabus and what you are studying.
 
Thanks fresh_42 for your help 👍
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K