Undergrad Problem with notation of matrix elements

  • Thread starter Thread starter Lambda96
  • Start date Start date
Click For Summary
The discussion centers on confusion regarding matrix notation, specifically the use of indices in Einstein notation, such as ##A_{\quad i}^j## and ##A_i^{\quad j}##. Participants clarify that this notation is commonly used in physics and represents an abbreviation for summation over indices. The notation indicates which indices are summed and their respective positions, with the upper indices typically representing columns and lower indices representing rows. Understanding this notation is essential for grasping concepts like the Frobenius product and its properties. The conversation highlights the importance of aligning course materials with notation used in advanced mathematical contexts.
Lambda96
Messages
233
Reaction score
77
TL;DR
What does this notation ##A_{\quad i}^j## and ##A_i^{\quad j}## mean?
Hi,

In one of my assignments, we had to prove that the Frobenius product corresponds to a complex scalar product. For one, we had to prove that the Frobenius product is hermitian symmetric.

I have now received the solution to the problem, and unfortunately I do not understand the notation for the individual matrix elements. I only know the notation ##a_{ij}## but what does it mean when one of the indices is written with a space of A or B, what is this space about? What should be the row and what the column in this kind of notation?

Here is the solution

Bildschirmfoto 2023-07-20 um 15.45.35.png
 
Physics news on Phys.org
Lambda96 said:
TL;DR Summary: What does this notation ##A_{\quad i}^j## and ##A_i^{\quad j}## mean?

Hi,

In one of my assignments, we had to prove that the Frobenius product corresponds to a complex scalar product. For one, we had to prove that the Frobenius product is hermitian symmetric.

I have now received the solution to the problem, and unfortunately I do not understand the notation for the individual matrix elements. I only know the notation ##a_{ij}## but what does it mean when one of the indices is written with a space of A or B, what is this space about? What should be the row and what the column in this kind of notation?

Here is the solution

View attachment 329456

It is called Einstein notation or Einstein summation. Physicists use it all the time.
https://en.wikipedia.org/wiki/Einstein_notation

You can deconstruct it by the image you posted.
\begin{align*}
(A^\dagger B)_{ij}&=\sum_{k=1}^n (A^\dagger )_{ik}\cdot B_{kj} =\sum_{k=1}^n (\overline{A_{ki}})\cdot B_{kj}\\
\operatorname{trace}(A^\dagger B)&=\sum_{p=1}^n (A^\dagger B)_{pp}\\
&=\sum_{p=1}^n \left(\sum_{k=1}^n (\overline{A})_{kp}\cdot B_{kp}\right)\\
&=\sum_{j=1}^n \left(\sum_{i=1}^n (\overline{A})_{ij}\cdot B_{ij}\right)\\
&= (\overline{{A_j}^i})\cdot {B^j}_i
\end{align*}

It is an abbreviation for the summation. Summed is over the indices that occur on top and at the bottom, here twice: sum over ##i## and sum over ##j##.
 
  • Like
Likes Lambda96 and PeroK
Lambda96 said:
TL;DR Summary: What does this notation ##A_{\quad i}^j## and ##A_i^{\quad j}## mean?

Hi,

In one of my assignments, we had to prove that the Frobenius product corresponds to a complex scalar product. For one, we had to prove that the Frobenius product is hermitian symmetric.

I have now received the solution to the problem, and unfortunately I do not understand the notation for the individual matrix elements. I only know the notation ##a_{ij}## but what does it mean when one of the indices is written with a space of A or B, what is this space about? What should be the row and what the column in this kind of notation?

Here is the solution

View attachment 329456
If in an assignment you encounter a notation that you have never seen before, then there must be a serious disconnection between your course syllabus and what you are studying.
 
Thanks fresh_42 for your help 👍
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K