MHB Product of discontinuous functions

  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Functions Product
Click For Summary
The discussion centers on constructing functions \( h(x) = f(x)g(x) \) that remain continuous at a point \( c \) despite both \( f \) and \( g \) being discontinuous there. An initial example provided features functions defined based on rational and irrational numbers, resulting in \( h(x) = 0 \) for all \( x \in \mathbb{R} \), which is continuous. Further examples suggest defining \( f \) and \( g \) with different constant values around \( c \) to ensure their product is continuous. The importance of the domain of definition in determining continuity is emphasized, illustrating that continuity can vary significantly depending on the context. Overall, the thread explores the nuanced relationship between discontinuous functions and their products.
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Let $$f:\mathbb{R} \to \mathbb{R}$$ and $$g:\mathbb{R} \to \mathbb{R}$$ be discontinuous at a point $$c$$ . Give an example of a function $$h(x)=f(x)g(x)$$ such that $$h$$ is continuous at c.
$$
f(x) =
\begin{cases}
0 & \text{if } x \in \mathbb{Q} \\
1 & \text{if } x \in \mathbb{R}-\mathbb{Q}
\end{cases}$$

$$
g(x) =
\begin{cases}
1 & \text{if } x \in \mathbb{Q} \\
0 & \text{if } x \in \mathbb{R}-\mathbb{Q}
\end{cases}$$

$$f,g$$ are continuous nowhere but $$h(x)=0 \,\,\, \, \forall \,\, x \in \mathbb{R}$$.

What other examples you might think of ?
 
Physics news on Phys.org
ZaidAlyafey said:
Let $$f:\mathbb{R} \to \mathbb{R}$$ and $$g:\mathbb{R} \to \mathbb{R}$$ be discontinuous at a point $$c$$ . Give an example of a function $$h(x)=f(x)g(x)$$ such that $$h$$ is continuous at c.
$$
f(x) =
\begin{cases}
0 & \text{if } x \in \mathbb{Q} \\
1 & \text{if } x \in \mathbb{R}-\mathbb{Q}
\end{cases}$$

$$
g(x) =
\begin{cases}
1 & \text{if } x \in \mathbb{Q} \\
0 & \text{if } x \in \mathbb{R}-\mathbb{Q}
\end{cases}$$

$$f,g$$ are continuous nowhere but $$h(x)=0 \,\,\, \, \forall \,\, x \in \mathbb{R}$$.

What other examples you might think of ?

Hi Zaid, :)

How about the set for functions, \(\{f,\,g\}\) such that,

\[f(x)=\begin{cases}a & \text{if } x \geq c \\b & \text{if } x < c\end{cases}\]

\[g(x)=\begin{cases}b & \text{if } x \geq c \\a & \text{if } x < c\end{cases}\]

where \(a,\,b,\,c\in \Re\) and \(a\neq b\).
 
The most general, and all-encompassing example I can think of, off the top of my head:

Let $a \neq b$ and define:

$f(x) = a,\ x \neq c$
$f(c) = b$

$g(x) = b,\ x \neq c$
$g(c) = a$

Clearly, neither $f$ nor $g$ is continuous at $c$, as can be proved straight from the definition (use an $0 < \epsilon < |b - a|$).

Just as clearly:

$fg(x) = ab,\ \forall x \in \Bbb R$, which is clearly continuous.

One can construct more "extravagant" examples, but the important part is that $a \neq b$, and that $f$ and $g$ "complement" each other. In fact, there is nothing special about the partition of $\Bbb R$ into the two disjoint sets $\{c\}$ and $\Bbb R - \{c\}$, you can use any partition (such as the Dedekind cut example Sudharaka gives, or the partition into the rationals and irrationals).

To me, this underscores the fact that continuity (of a function) is dependent on the DOMAIN OF DEFINITION of said function, not just the "rule itself" of said function.

In other words, a "continuous function" doesn't really MEAN anything, what IS meaningful is: a function continuous at all points of a set $A$. The underlying domain is important. Context is everything: a function that is perfectly continuous on the real numbers may suddenly spectacularly fail to be so on the complex numbers, for example (as is the case with:

$f(x) = \dfrac{1}{1 + x^2}$).
 
Characteristic function of A
\chi_A : \mathbb{R} \rightarrow \{0,1\}
\chi_A =\left\{ \begin{array}{lr} 1 &amp;,x\in A \\ 0 &amp;,x\in A^{c} \end{array} \right.
\chi_{A^{c}} = \left\{ \begin{array}{ir} 0 &amp; , x\in A \\ 1 &amp; , x\in A^{c} \end{array} \right.
Their product is zero function which is continuous
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K