alyafey22
Gold Member
MHB
- 1,556
- 2
Let $$f:\mathbb{R} \to \mathbb{R}$$ and $$g:\mathbb{R} \to \mathbb{R}$$ be discontinuous at a point $$c$$ . Give an example of a function $$h(x)=f(x)g(x)$$ such that $$h$$ is continuous at c.
$$
f(x) =
\begin{cases}
0 & \text{if } x \in \mathbb{Q} \\
1 & \text{if } x \in \mathbb{R}-\mathbb{Q}
\end{cases}$$
$$
g(x) =
\begin{cases}
1 & \text{if } x \in \mathbb{Q} \\
0 & \text{if } x \in \mathbb{R}-\mathbb{Q}
\end{cases}$$
$$f,g$$ are continuous nowhere but $$h(x)=0 \,\,\, \, \forall \,\, x \in \mathbb{R}$$.
What other examples you might think of ?
$$
f(x) =
\begin{cases}
0 & \text{if } x \in \mathbb{Q} \\
1 & \text{if } x \in \mathbb{R}-\mathbb{Q}
\end{cases}$$
$$
g(x) =
\begin{cases}
1 & \text{if } x \in \mathbb{Q} \\
0 & \text{if } x \in \mathbb{R}-\mathbb{Q}
\end{cases}$$
$$f,g$$ are continuous nowhere but $$h(x)=0 \,\,\, \, \forall \,\, x \in \mathbb{R}$$.
What other examples you might think of ?