Math Amateur
Gold Member
MHB
- 3,920
- 48
Products of ideals of K[x1, x2, x3, x3]
I am reading R.Y. Sharpe: Steps in Commutative Algebra. In chapter 2 on Ideals, on page 28 we find Exercise 2.27 which reads as follows: (see attachment)
------------------------------------------------------------------------------
2.27 Exercise: Let $$K$$ be a field, and let $$ R = K[x_1, x_2, x_3, x_4] $$, the ring of polynomials over K in indeterminates x_1, x_2, x_3, x_4.
Set $$ I = Rx_1 + Rx_2 $$ and $$ J = Rx_3 + Rx_4 $$
Show that $$ IJ \ne \{fg: \ f \in I, g \in J \} $$
------------------------------------------------------------------------------
My problem is I seemed to have ended up showing that $$ IJ = \{fg: \ f \in I, g \in J \} $$ ... so obviously something is wrong with my working ...
Can someone please explain my error(s)?
My working is as follows:
--------------------------------------------------------------------------
$$ Rx_1 = \{ fx_1 \ | \ f \in R \} $$
and Rx_2, Rx_3, Rx_4 are defined similarly.$$ I = Rx_1 + Rx_2 $$
$$ = \{ h+k \ | \ h \in Rx_1 , k \in Rx_2 \} $$
$$ = \{ fx_1 + gx_2 \ | \ f, g \in R \} $$
and similarly
$$ J = \{ hx_1 + kx_2 \ | \ h, k \in R \} $$
Then $$ IJ = $$ set of all finite sums of elements of the form $$ lm $$ with $$ l \in I, m \in J $$
$$ = \{ {\sum}_{i=1}^{n} l_im_i \ | \ n \in \mathbb{N}, l_i \in I, m_i \in J \} $$
$$ = \{ {\sum}_{i=1}^{n} (f_ix_1 + g_ix_2)(h_ix_3 + k_ix_4) \ | \ f_i, g_i, h_i, k_i \in R \} $$
$$ = \{ {\sum}_{i=1}^{n} f_ih_ix_1x_3 + f_ik_ix_1x_4 + g_ih_ix_2x_3 + g_ik_ix_2x_4 \ | \ f_i, g_i, h_i, k_i \in R \} $$
$$ = \{ {\sum}_{i=1}^{n} l_ix_1x_3 + m_ix_1x_4 + p _ix_2x_3 + q_ix_2x_4 \ | \ l_i, m_i, p_i, q_i \in R \} $$
$$ = lx_1x_3 + mx_1x_4 + px_2x_3 + x_2x_4 \ | \ l, m, p, q \in R \}$$
since we can put $$l_1 + l_2 + ... \ ... l_n = l $$ and similarly with $$ m, p, q $$Now consider the set $$ \{ fg: \ f\in I, g \in J \} $$
$$ \{ fg: \ f\in I, g \in J \} $$
$$ = \{ (l_1x_1 + m_1x_2)(p_1x_3 + q_1x_4) \ | \ l_1, m_1, p_1, q_1 \in R \} $$
$$ = \{ l_1p_1x_1x_3 + l_1q_1x_1x_4 + m_1p_1x_2x_3 + m_1q_1x_2x_4 \ | \ l_1, m_1, p_1, q_1 \in R \} $$
$$ = \{ lx_1x_3 + mx_1x_4 + px_2x_3 + qx_2x_4 \ | \ l, m, p, q \in R \} $$BUT then $$ IJ = \{fg: \ f \in I, g \in J \} $$ ?
Can someone please explain my error(s)
Peter
I am reading R.Y. Sharpe: Steps in Commutative Algebra. In chapter 2 on Ideals, on page 28 we find Exercise 2.27 which reads as follows: (see attachment)
------------------------------------------------------------------------------
2.27 Exercise: Let $$K$$ be a field, and let $$ R = K[x_1, x_2, x_3, x_4] $$, the ring of polynomials over K in indeterminates x_1, x_2, x_3, x_4.
Set $$ I = Rx_1 + Rx_2 $$ and $$ J = Rx_3 + Rx_4 $$
Show that $$ IJ \ne \{fg: \ f \in I, g \in J \} $$
------------------------------------------------------------------------------
My problem is I seemed to have ended up showing that $$ IJ = \{fg: \ f \in I, g \in J \} $$ ... so obviously something is wrong with my working ...
Can someone please explain my error(s)?
My working is as follows:
--------------------------------------------------------------------------
$$ Rx_1 = \{ fx_1 \ | \ f \in R \} $$
and Rx_2, Rx_3, Rx_4 are defined similarly.$$ I = Rx_1 + Rx_2 $$
$$ = \{ h+k \ | \ h \in Rx_1 , k \in Rx_2 \} $$
$$ = \{ fx_1 + gx_2 \ | \ f, g \in R \} $$
and similarly
$$ J = \{ hx_1 + kx_2 \ | \ h, k \in R \} $$
Then $$ IJ = $$ set of all finite sums of elements of the form $$ lm $$ with $$ l \in I, m \in J $$
$$ = \{ {\sum}_{i=1}^{n} l_im_i \ | \ n \in \mathbb{N}, l_i \in I, m_i \in J \} $$
$$ = \{ {\sum}_{i=1}^{n} (f_ix_1 + g_ix_2)(h_ix_3 + k_ix_4) \ | \ f_i, g_i, h_i, k_i \in R \} $$
$$ = \{ {\sum}_{i=1}^{n} f_ih_ix_1x_3 + f_ik_ix_1x_4 + g_ih_ix_2x_3 + g_ik_ix_2x_4 \ | \ f_i, g_i, h_i, k_i \in R \} $$
$$ = \{ {\sum}_{i=1}^{n} l_ix_1x_3 + m_ix_1x_4 + p _ix_2x_3 + q_ix_2x_4 \ | \ l_i, m_i, p_i, q_i \in R \} $$
$$ = lx_1x_3 + mx_1x_4 + px_2x_3 + x_2x_4 \ | \ l, m, p, q \in R \}$$
since we can put $$l_1 + l_2 + ... \ ... l_n = l $$ and similarly with $$ m, p, q $$Now consider the set $$ \{ fg: \ f\in I, g \in J \} $$
$$ \{ fg: \ f\in I, g \in J \} $$
$$ = \{ (l_1x_1 + m_1x_2)(p_1x_3 + q_1x_4) \ | \ l_1, m_1, p_1, q_1 \in R \} $$
$$ = \{ l_1p_1x_1x_3 + l_1q_1x_1x_4 + m_1p_1x_2x_3 + m_1q_1x_2x_4 \ | \ l_1, m_1, p_1, q_1 \in R \} $$
$$ = \{ lx_1x_3 + mx_1x_4 + px_2x_3 + qx_2x_4 \ | \ l, m, p, q \in R \} $$BUT then $$ IJ = \{fg: \ f \in I, g \in J \} $$ ?
Can someone please explain my error(s)
Peter
Last edited: