MHB Proof by induction? No Idea what I should do :(

Click For Summary
SUMMARY

The discussion focuses on proving the equation $$\sum_{n = 1}^k (-1)^{n - 1} n^2 = (-1)^{k + 1} \sum_{n = 1}^k n$$ by mathematical induction. Participants clarify that the initial attempts were incorrect, specifically noting that $n^n$ should be $n^2$. The correct approach involves simplifying the right side using the formula for the sum of the first $n$ integers, $$\sum_{n = 1}^k n = \frac{1}{2}k(k+1)$$. The proof is established by demonstrating that the equation holds for $k=1$ and then assuming it is true for $k$ to show it is also true for $k+1.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with summation notation
  • Knowledge of the formula for the sum of the first n integers
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the principles of mathematical induction in detail
  • Learn about summation techniques and identities
  • Explore proofs involving sequences and series
  • Practice problems on mathematical induction with varying complexity
USEFUL FOR

Students in mathematics, educators teaching algebra and calculus, and anyone interested in understanding mathematical proofs and induction techniques.

FriendlyCashew
Messages
2
Reaction score
0
find the general rule and prove by induction

1 = 1
1 - 4 = -(1 + 2)
1 - 4 + 9 = 1 + 2 + 3
1 - 4 + 9 -16 = -(1 + 2 + 3 + 4)

I created this so far, but don't know if I am even going the correct direction

1594666104073.png
 

Attachments

  • 1594666034481.png
    1594666034481.png
    2.7 KB · Views: 114
Physics news on Phys.org
FriendlyCashew said:
find the general rule and prove by induction

1 = 1
1 - 4 = -(1 + 2)
1 - 4 + 9 = 1 + 2 + 3
1 - 4 + 9 -16 = -(1 + 2 + 3 + 4)

I created this so far, but don't know if I am even going the correct direction

View attachment 10459
You have the correct formula, except that $n^n$ should be $n^2$. I think your next step should be to simplify the right side of the formula by using the formula (which you probably know?) for the sum of the numbers $1$ to $n$. After that, you should be able to apply the method of induction.
 
FriendlyCashew said:
find the general rule and prove by induction

1 = 1
1 - 4 = -(1 + 2)
1 - 4 + 9 = 1 + 2 + 3
1 - 4 + 9 -16 = -(1 + 2 + 3 + 4)

I created this so far, but don't know if I am even going the correct direction

View attachment 10459
Actually, I think what you want is
[math]\sum_{n = 1}^k (-1)^{n - 1} n^2 = (-1)^{k + 1} \sum_{n = 1}^k n[/math]

Does this work for some value of k? (Sure, try k = 1.) So if it works for k, does it work for k + 1?

-Dan
 
1594726378767.png

1594726602319.png

1594726753755.png

1594726804881.png


Is this correct?
 
FriendlyCashew said:
find the general rule and prove by induction

1 = 1
1 - 4 = -(1 + 2)
1 - 4 + 9 = 1 + 2 + 3
1 - 4 + 9 -16 = -(1 + 2 + 3 + 4)

I created this so far, but don't know if I am even going the correct direction

View attachment 10459
The equation that you are trying to prove by induction is $$\sum_{n = 1}^k (-1)^{n - 1} n^2 = (-1)^{k + 1} \sum_{n = 1}^k n$$. Your first attempt at this was wrong, and so was mine (sorry about that). But topsquark got it right. The next step is to use the fact that $$ \sum_{n = 1}^k n = \frac12k(k+1)$$. So you want to prove that $$\sum_{n = 1}^k (-1)^{n - 1} n^2 = \frac12(-1)^{k + 1}k(k+1)$$. That equation is true when $k=1$ because both sides are then equal to $1$.

Now suppose that the equation is true for $k$. You want to show that it is also true for $k+1$, namely that $$\sum_{n = 1}^{k+1} (-1)^{n - 1} n^2 = \frac12(-1)^{k + 2}(k+1)(k+2)$$. On the left side of the equation, that differs from the previous equation just by the addition of one extra term $(-1)^k(k+1)^2$. So starting with the known equation $$ \sum_{n = 1}^k (-1)^{n - 1} n^2 = \frac12(-1)^{k + 1}k(k+1)$$, add $(-1)^k(k+1)^2$ to each side to get $$\sum_{n = 1}^{k+1} (-1)^{n - 1} n^2 = \frac12(-1)^{k + 1}k(k+1) + (-1)^k(k+1)^2$$.

Now can you simplify the right side of that equation to complete the proof?
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K