Proof for this Laplace transform

  • Thread starter Reshma
  • Start date
  • #1
747
4

Main Question or Discussion Point

Can someone help me out with the proof of the Laplace transform of the function tn?

I did have a go at this one.
[tex]L[t^n] = \int_0^{\infty} t^n e^{-st}dt[/tex]

[tex]= t^n\frac{-e^{-st}}{s}\vert_0^{\infty} + {1\over s}\int_0^{\infty} nt^{n-1}e^{-st}dt[/tex]

[tex]={n\over s}\int_0^{\infty} t^{n-1}e^{-st}dt[/tex]

[tex]={n\over s}L[t^{n-1}][/tex]

I am supposed to arrive at the result:
[tex]L[t^n] = \frac{(n+1)!}{s^{n+1}}[/tex]
 

Answers and Replies

  • #2
747
4
Just an addendum, should I prove this using induction?
 
  • #3
289
0
[tex]L(t^{n}) = \int_{0}^{\infty} t^{n}e^{-st}dt[/tex]

Let [tex]v=st[/tex] to give [tex]L(t^{n}) = \frac{1}{s^{n+1}}\int_{0}^{\infty}v^{n}e^{-v}dv = \frac{1}{s^{n+1}}\Gamma(n+1)[/tex]

[tex]\Gamma(n+1) = n![/tex], giving the result [tex]L(t^{n}) = \frac{n!}{s^{n+1}}[/tex]. This isn't what you've got, but check by using n=1 to see whose correct.

[tex]L(t) = \int_{0}^{\infty}te^{-st}dt =\left[ \frac{te^{-st}}{-s}\right]_{0}^{\infty} - \int_{0}^{\infty}\frac{1}{-s}e^{-st}dt = \frac{1}{s^{2}}[/tex]

Hence [tex]L(t^{1}) = \frac{1!}{s^{2}}[/tex], so the formula you were trying to derive isn't correct.
 
Last edited:

Related Threads for: Proof for this Laplace transform

  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
4
Views
3K
  • Last Post
Replies
7
Views
2K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
3
Views
5K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
3
Views
1K
Top