MHB Proof Noetherian Ring: $M^2 \ne M$

  • Thread starter Thread starter Amer
  • Start date Start date
  • Tags Tags
    Ring
Click For Summary
In the discussion on proving that for a Noetherian ring R, a maximal ideal M satisfies M^2 ≠ M, the initial proof attempts to show a contradiction by assuming M^2 = M. The proof highlights that since M is finitely generated, one of its generators can be expressed in terms of others, leading to a contradiction if M^2 equals M. A participant points out that the proof is incorrect and suggests using Nakayama's lemma, which indicates that if M^2 = M, then there exists an idempotent element e in M. The conclusion drawn is that if M were generated by e, it would contradict the properties of maximal ideals in a Noetherian ring.
Amer
Messages
259
Reaction score
0
Can you check my Work or mention a link for a proof.
Let $R$ be Noetherian ring. Then if $M$ is a maximal ideal in $R$. Prove that $M^2 \ne M$.

Proof:
Since $R$ is Noetherian ring then $M$ is finitely generated. Thus $M = (a_1, a_2 , \cdots, a_k)$ we can choose the $a_i's $ which are minimal in the sense that $M$ can't be generated if we ignore one of the $a_i's$. Also that means one $a_i$ can be generated by other $a's $.

Suppose on the contrary that $M^2 = M$. Hence $a_1 \in M^2 $. But elements of $M^2$ has the form $\displaystyle \sum_{i=1}^{n} k_i a_j a_h$ for some $n$
Therefore
$\displaystyle a_1 = \sum_{i=1}^{n} k_i a_j a_h $ the right hand side is divisible by $a_1$ since the left hand side is. and since $a_1$ can't be generated by other $a_i's$ that means $a_1$ should appear on terms of the right hand side moving these terms to the left and factoring $a_1$ we will get someone like this

$\displaystyle a_1 ( 1 - \sum_{i=1}^{n} c_i a_i) = \sum_{i=1}^{m} k_i a_j a_h ,~~~ i, j \ne 1$
I think the right hand side is equal to zero if it is then we will get $1 = \sum_{i=1}^{n} c_i a_i $, it follows that $1 \in M$ a contradiction. But is it zero ?. if it is not then how i can prove it.

Thanks
 
Physics news on Phys.org
Hi Amer, is it assumed that $R$ is a commutative?
 
Euge said:
Hi Amer, is it assumed that $R$ is a commutative?

yea commutative with 1
 
Ok. The proof you've provided is incorrect. Here's something to keep in mind. If $M^2 = M$, then since $M$ is finitely generated, Nakayama's lemma gives an $e \in M$ for which $m = em$ for all $m \in M$. In particular, $e^2 = e$, i.e., $e$ is idempotent. Furthermore, $M = (e)$.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
21
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K