solakis1
- 407
- 0
Prove that the sequence :$$(-1)^n$$ diverges by using the ε-definition of the limit of a sequence
HallsofIvy said:Ok, what is that definition? Can you give an explicit statement of the definition?
[sp] if n>N,then is either even or odd and not bothHallsofIvy said:Very good!
So, use a proof by contradiction. If this sequence converges to, say, m, then, given any $\epsilon> 0$, there exist N such that, if n> N, $|a_n- m|< \epsilon$. Suppose $\epsilon$ were equal to, say, 1/2. Since for any odd n, $a_n= -1$, and for any even n, $a_n= 1$, no matter what N is there will exist some even number, $n_e$, and some odd number, $n_o$, both larger than N such that $|a_{n_e}- m|= |1- m|< 1/2$ and $|a_{n_0}- m|= |-1- m|< 1/2$.
The first of those says $-1/2< 1- m< 1/2$ so that $-3/2< m< -1/2$ and the second that $-1/2< -1- m< 1/2$ so that $-3/2< -m< -1/2$ and then $1/2< m< 3/2$. $-3/2< m< -1/2$ and $1/2< m< 3/2$ cannot both be true.
Is there any reason why this pretty standard "Calculus I" homework problem was posted in "Challenge Questions and Puzzles"?
Euge said:Here is my solution.
Given a real number $L$, set $\epsilon = \max\{\lvert 1 - \lvert L\rvert\rvert,2\}$. Then $\epsilon > 0$. If $N$ is a positive integer, let $n$ be $2N+1$ if $L \neq -1$, and $2N$ if $L=-1$. Then $n > N$ and $\lvert (-1)^n - L\rvert \ge \epsilon$. Hence, the sequence $\{(-1)^n\}$ is divergent.
solakis said:[sp] For n=2N+1, $$L\neq -1$$ ,then n>N and $$|(-1)^n-L|=|-1-L|=|1+L|$$
So ε must be set :ε =min{|1+L|,2}
I think.[/sp]
Euge said:There was a typo, but $\min\{\lvert 1 + L\rvert, 2\}$ is not a valid choice for $\epsilon$ since then $\epsilon = 0$ when $L = -1$. In any case, I meant to have $\epsilon = \epsilon(L) := \lvert 1 + L\rvert$ for $L \neq -1$ and $2$ for $L = -1$. It is then clear that for each positive integer $n$, $\lvert (-1)^{2n} - (-1)\rvert = 2 = \epsilon(-1)$ and $\lvert (-1)^{2n+1} - L\rvert = \lvert 1 + L\rvert = \epsilon(L)$ (when $L \neq -1$)