# Divergence Definition and 774 Threads

In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
As an example, consider air as it is heated or cooled. The velocity of the air at each point defines a vector field. While air is heated in a region, it expands in all directions, and thus the velocity field points outward from that region. The divergence of the velocity field in that region would thus have a positive value. While the air is cooled and thus contracting, the divergence of the velocity has a negative value.

View More On Wikipedia.org
1. ### I Infinite Series - Divergence of 1/n question

I understand mathematically several ways to test whether an infinite series converges or diverges. However, I came across one particular equation that is stumping me, ## \sum_{n=1}^{\infty} 1/n ##. I understand how to mathematically apply series tests to show it diverges. But intuitively, I...
2. ### I Convergence and divergence of series and sequences

Theorem 1. If a series ##{a_n}## converges, then the sequence ##{a_n}## converges to ##0##. Now, the contra does not apply, and my question is why? i.e if the the sequence ##{a_n}## converges to ##0## then the series may or may not converge correct? and if it does not converge to ##0## then it...
3. ### The div in cartesian coordinates

I am currently studying a section from \textit{Electricity and Magnetism} by Purcell, pages 81 and 82, and need some clarification on the following concept. Here’s what I understand so far: 1. The integral of a function $\mathbf{F}$ over a surface $$S$$ is equal to the sum of the integrals...
4. M

### Proving convergence and divergence of series

For this problem, Let ##a_n = \frac{1}{n(\ln n)^p}## ##b_n = \frac{1}{(n \ln n)^p} = \frac{1}{(n^*)^p}## We know that ##\sum_{2 \ln 2}^{\infty} \frac{1}{(n^*)^p}## is a p-series with ##n^* = n\ln n##, ##n^* \in \mathbf{R}## Assume p-series stilll has the same property when ##n^* \in...
5. ### I What's the physical meaning of Curl of Curl of a Vector Field?

So, curl of curl of a vector field is, $$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$ Now, curl means how much a vector field rotates counterclockwise. Then, curl of curl should mean how much the curl rotate counterclockwise. The laplacian...
6. ### Find the divergence and curl of the given vector field

Been long since i studied this area...time to go back. ##F = x \cos xi -e^y j+xyz k## For divergence i have, ##∇⋅F = (\cos x -x\sin x)i -e^y j +xy k## and for curl, ##∇× F = \left(\dfrac{∂}{∂y}(xyz)-\dfrac{∂}{∂z}(-e^y)\right) i -\left(\dfrac{∂}{∂x}(xyz)-\dfrac{∂}{∂z}(x \cos...
7. ### B A Magnetic Misconception on Divergence 0/Closed Field Lines?

Question: Can we ultimately atttribute no work or net zero work done by a magnetic force to the closed magnetic field lines that results in Divergence zero of a magnetic field? That is, is it a misconception to say that closed magnetic field lines imply magnetic force will always result in no...
8. ### I In ##\nabla\cdot\vec{E}## why can ##\nabla## pass through the integral?

We have $$\vec{E}(\vec{r})=\frac{1}{4\pi\epsilon_0}\int_V\frac{\rho(\vec{r}')}{\eta^2}\hat{\eta}d\tau'\tag{1}$$ A few initial observations 1) I am using notation from the book Introduction to Electrodynamics by Griffiths. When considering point charges, this notation uses position vectors...
9. ### Divergence of ##\vec{x}/\vert\vec{x}\vert^3##

As you can see in the homework statement, I am asked to calculate what's effectively the divergence of the vector field ##\vec{F} = \vec{x}/\vert\vec{x}\vert^3## over ##\mathbb{R}^3##. I have done that, the calculation itself isn't that difficult after all. However, I can't make sense of the...
10. ### Divergence of the Electric field of a point charge

Hi, unfortunately, I am not sure if I have calculated the task correctly The electric field of a point charge looks like this ##\vec{E}(\vec{r})=\frac{Q}{4 \pi \epsilon_0}\frac{\vec{r}}{|\vec{r}|^3}## I have now simply divided the electric field into its components i.e. #E_x , E-y, E_z#...
11. ### B Solving for the Nth divergence in any coordinate system

Preface We know that, in Cartesian Coordinates, $$\nabla f= \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$$ and $$\nabla^2 f= \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y} + \frac{\partial^2 f}{\partial^2 z}$$ Generalizing...
12. ### I Understanding the nth-term test for Divergence

There are several examples that i have looked at which are quite clear and straightforward, e.g ##\sum_{n=0}^\infty 2^n## it follows that ##\lim_{n \rightarrow \infty} {2^n}=∞## thus going with the theorem, the series diverges. Now let's look at the example below; ##\sum_{n=1}^\infty...
13. ### Series investigation: divergence/convergence

Hi everyone! It's about the following task: show the convergence or divergence of the following series (combine estimates and criteria). I am not sure if I have solved the problem correctly. Can you guys help me? Is there anything I need to correct? I look forward to your feedback.
14. ### Determine Convergence/Divergence of Sequence: f(x)=ln(x)^2/x

##a_n= \left[\dfrac {\ln (n)^2}{n}\right]## We may consider a function of a real variable. This is my approach; ##f(x) =\left[\dfrac {\ln (x)^2}{x}\right]## Applying L'Hopital's rule we shall have; ##\displaystyle\lim_ {x\to\infty} \left[\dfrac {\ln (x)^2}{x}\right]=\lim_ {x\to\infty}\left[...
15. ### How to apply divergence free (∇.v=0) in nodal finite element method?

I know how to apply boundary condition like Dirichlet, Neumann and Robin but i have been struggling to apply divergence free condition for Maxwells or Stokes equations in nodal finite element method. to overcome this difficulties a special element was developed called as edge element but i don't...
16. ### B Understanding about Sequences and Series

Homework Statement:: Tell me if a sequence or series diverges or converges Relevant Equations:: Geometric series, Telescoping series, Sequences. If I have a sequence equation can I tell if it converges or diverges by taking its limit or plugging in numbers to see what it goes too? Also if I...

26. ### True or false questions about Divergence and Curl

##F = (P,Q,R)## is a field of vector C1 defined on ##V = R3-{0,0,0}## There are a lot of true or false statement here. I am a little skeptical about my answer because it contains a lot of F, but let's go. 1 Rot of F is null in V iff ##\int \int_{S} P dx + Q dy + R dz = 0## for all sphere S...
27. ### Why can't I use the divergence theorem?

Greetings! here is the following exercice I understand that when we follow the traditional approach, (prametrization of the surface) we got the answer which is 8/3 But why the divergence theorem can not be used in our case? (I know it's a trap here) thank you!
28. ### I Divergence of first Piola-Kirchoff stress tensor

Hi everyone, studying the bending of an incompressible elastic block of Neo-Hookean material, one finds out the first Piola-Kirchoff stress tensor as at page 182 (equation 5.93) where $e_r = cos(\theta)e_1 + \sin(\theta)e_2$ and $e_{\theta} = -sin(\theta)e_1 + \cos(\theta)e_2$ How is the...
29. ### Divergence in Spherical Coordinate System by Metric Tensor

The result equation doesn't fit with the familiar divergence form that are usually used in electrodynamics. I want to know the reason why I was wrong. My professor says about transformation of components. But I cannot close to answer by using this hint, because I don't have any idea about "x"...
30. E

### B Confusion about Divergence Theorem Step in Tong's Notes

I wanted to ask about a step I couldn't understand in Tong's notes$$\int_M d^n x \partial_{\mu}(\sqrt{g} X^{\mu}) = \int_{\partial M} d^{n-1}x \sqrt{\gamma N^2} X^n = \int_{\partial M} d^{n-1}x \sqrt{\gamma} n_{\mu} X^{\mu}$$we're told that in these coordinates ##\partial M## is a surface of...
31. ### Relating volumetric dilatation rate to the divergence for a fluid-volume

in class we derived the following relationship: $$\frac{1}{V}\frac{dV}{dt}= \nabla \cdot \vec{v}$$ This was derived though the analysis of linear deformation for a fluid-volume, where: $$dV = dV_x +dV_y + dV_z$$ I understood the derived relation as: 1/V * (derivative wrt time) = div (velocity)...

At some point, in Physics (more precisely in thermodynamics), I must take the divergence of a quantity like ##\mu \vec F##. Where ##\mu## is a scalar function of possibly many different variables such as temperature (which is also a scalar), position, and even magnetic field (a vector field)...
33. ### MHB Divergence of the Navier Stokes equation

If not, can someone walk me through the steps to get to the results that my professor got? Thank you.
34. ### Gauss' divergence theorem and thermoelectricity contradiction

I get a nonsensical result. I am unable to understand where I go wrong. Let's consider a material with a temperature independent Seebeck coefficient, thermal conductivity and electrochemical potential to keep things simple. Let's assume that this material is sandwiched between 2 other materials...
35. ### Using the Divergence Theorem on the surface of a sphere

The integral that I have to solve is as follows: \oint_{s} \frac{1}{|r-r'|}da', \quad\text{ integrating with respect to r '}, integrating with respect to r' Then I apply the divergence theorem, resulting in: \iiint \limits _{v} \nabla \cdot \frac{1}{|r-r'|}dv' =...

45. ### Finding Scalar Curl and Divergence from a Picture of Vector Field

For divergence: We learned to draw a circle at different locations and to see if gas is expanding/contracting. Whenever the y-coordinate is positive, the gas seems to be expanding, and it's contracting when negative. I find it hard to tell if the gas is expanding or contracting as I go to the...
46. ### How to prove divergence of harmonic series by eps-delta proof?

Set ##\epsilon=\frac{1}{2}##. Let ##N\in \mathbb{N}## and choose ##n=N,m=2N##. Then: ##\begin{align*} \left|s_N-s_{2N}\right|&=&\left|\sum_{l=1}^N \frac{1}{l} - \sum_{l=1}^{2N} \frac{1}{l}\right|\\...
47. ### Divergence of a position vector in spherical coordinates

I know the divergence of any position vectors in spherical coordinates is just simply 3, which represents their dimension. But there's a little thing that confuses me. The vector field of A is written as follows, , and the divergence of a vector field A in spherical coordinates are written as...
48. ### Vector Divergence: Are the Expressions True?

Do I have to write something like, $$\nabla' \cdot \vec{J} = \frac{\partial J^m(r')}{\partial x'^m} + \frac{\partial J^m(t_r)}{\partial x'^m}$$ $$\nabla \cdot \vec{J} = \frac{\partial J^m(r')}{\partial x^m} + \frac{\partial J^m(t_r)}{\partial x^m} = \frac{\partial J^m(t_r)}{\partial x^m}$$...
49. ### I Can the Chain Rule be Applied to Simplify Divergence in Entropy Equation?

I am looking at the derivation for the Entropy equation for a Newtonian Fluid with Fourier Conduction law. At some point in the derivation I see \frac{1}{T} \nabla \cdot (-\kappa \nabla T) = - \nabla \cdot (\frac{\kappa \nabla T}{T}) - \frac{\kappa}{T^2}(\nabla T)^2 K is a constant and T...
50. ### Verify the convergence or divergence of a power series

At the exam i had this power series but couldn't solve it ##\sum_{k=0}^\infty (-1)^\left(k+1\right) \frac {k} {log(k+1)} (2x-1)^k## i did apply the ratio test (lets put aside for the moment (2x-1)^k ) to the series ##\sum_{k=0}^\infty \frac {k} {log(k+1)}## in order to see to what this...