# What is Divergence: Definition and 766 Discussions

In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
As an example, consider air as it is heated or cooled. The velocity of the air at each point defines a vector field. While air is heated in a region, it expands in all directions, and thus the velocity field points outward from that region. The divergence of the velocity field in that region would thus have a positive value. While the air is cooled and thus contracting, the divergence of the velocity has a negative value.

View More On Wikipedia.org
1. ### Divergence of ##\vec{x}/\vert\vec{x}\vert^3##

As you can see in the homework statement, I am asked to calculate what's effectively the divergence of the vector field ##\vec{F} = \vec{x}/\vert\vec{x}\vert^3## over ##\mathbb{R}^3##. I have done that, the calculation itself isn't that difficult after all. However, I can't make sense of the...
2. ### Divergence of the Electric field of a point charge

Hi, unfortunately, I am not sure if I have calculated the task correctly The electric field of a point charge looks like this ##\vec{E}(\vec{r})=\frac{Q}{4 \pi \epsilon_0}\frac{\vec{r}}{|\vec{r}|^3}## I have now simply divided the electric field into its components i.e. #E_x , E-y, E_z#...
3. ### B Solving for the Nth divergence in any coordinate system

Preface We know that, in Cartesian Coordinates, $$\nabla f= \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$$ and $$\nabla^2 f= \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y} + \frac{\partial^2 f}{\partial^2 z}$$ Generalizing...
4. ### I Understanding the nth-term test for Divergence

There are several examples that i have looked at which are quite clear and straightforward, e.g ##\sum_{n=0}^\infty 2^n## it follows that ##\lim_{n \rightarrow \infty} {2^n}=∞## thus going with the theorem, the series diverges. Now let's look at the example below; ##\sum_{n=1}^\infty...
5. ### Series investigation: divergence/convergence

Hi everyone! It's about the following task: show the convergence or divergence of the following series (combine estimates and criteria). I am not sure if I have solved the problem correctly. Can you guys help me? Is there anything I need to correct? I look forward to your feedback.
6. ### Determine Convergence/Divergence of Sequence: f(x)=ln(x)^2/x

##a_n= \left[\dfrac {\ln (n)^2}{n}\right]## We may consider a function of a real variable. This is my approach; ##f(x) =\left[\dfrac {\ln (x)^2}{x}\right]## Applying L'Hopital's rule we shall have; ##\displaystyle\lim_ {x\to\infty} \left[\dfrac {\ln (x)^2}{x}\right]=\lim_ {x\to\infty}\left[...
7. ### How to apply divergence free (∇.v=0) in nodal finite element method?

I know how to apply boundary condition like Dirichlet, Neumann and Robin but i have been struggling to apply divergence free condition for Maxwells or Stokes equations in nodal finite element method. to overcome this difficulties a special element was developed called as edge element but i don't...
8. ### B Understanding about Sequences and Series

Homework Statement:: Tell me if a sequence or series diverges or converges Relevant Equations:: Geometric series, Telescoping series, Sequences. If I have a sequence equation can I tell if it converges or diverges by taking its limit or plugging in numbers to see what it goes too? Also if I...

18. ### True or false questions about Divergence and Curl

##F = (P,Q,R)## is a field of vector C1 defined on ##V = R3-{0,0,0}## There are a lot of true or false statement here. I am a little skeptical about my answer because it contains a lot of F, but let's go. 1 Rot of F is null in V iff ##\int \int_{S} P dx + Q dy + R dz = 0## for all sphere S...
19. ### Why can't I use the divergence theorem?

Greetings! here is the following exercice I understand that when we follow the traditional approach, (prametrization of the surface) we got the answer which is 8/3 But why the divergence theorem can not be used in our case? (I know it's a trap here) thank you!
20. ### I Divergence of first Piola-Kirchoff stress tensor

Hi everyone, studying the bending of an incompressible elastic block of Neo-Hookean material, one finds out the first Piola-Kirchoff stress tensor as at page 182 (equation 5.93) where $e_r = cos(\theta)e_1 + \sin(\theta)e_2$ and $e_{\theta} = -sin(\theta)e_1 + \cos(\theta)e_2$ How is the...
21. ### Divergence in Spherical Coordinate System by Metric Tensor

The result equation doesn't fit with the familiar divergence form that are usually used in electrodynamics. I want to know the reason why I was wrong. My professor says about transformation of components. But I cannot close to answer by using this hint, because I don't have any idea about "x"...
22. E

### B Divergence theorem step

I wanted to ask about a step I couldn't understand in Tong's notes$$\int_M d^n x \partial_{\mu}(\sqrt{g} X^{\mu}) = \int_{\partial M} d^{n-1}x \sqrt{\gamma N^2} X^n = \int_{\partial M} d^{n-1}x \sqrt{\gamma} n_{\mu} X^{\mu}$$we're told that in these coordinates ##\partial M## is a surface of...
23. ### Relating volumetric dilatation rate to the divergence for a fluid-volume

in class we derived the following relationship: $$\frac{1}{V}\frac{dV}{dt}= \nabla \cdot \vec{v}$$ This was derived though the analysis of linear deformation for a fluid-volume, where: $$dV = dV_x +dV_y + dV_z$$ I understood the derived relation as: 1/V * (derivative wrt time) = div (velocity)...

At some point, in Physics (more precisely in thermodynamics), I must take the divergence of a quantity like ##\mu \vec F##. Where ##\mu## is a scalar function of possibly many different variables such as temperature (which is also a scalar), position, and even magnetic field (a vector field)...
25. ### MHB Divergence of the Navier Stokes equation

If not, can someone walk me through the steps to get to the results that my professor got? Thank you.
26. ### Gauss' divergence theorem and thermoelectricity contradiction

I get a nonsensical result. I am unable to understand where I go wrong. Let's consider a material with a temperature independent Seebeck coefficient, thermal conductivity and electrochemical potential to keep things simple. Let's assume that this material is sandwiched between 2 other materials...
27. ### Using the Divergence Theorem on the surface of a sphere

The integral that I have to solve is as follows: \oint_{s} \frac{1}{|r-r'|}da', \quad\text{ integrating with respect to r '}, integrating with respect to r' Then I apply the divergence theorem, resulting in: \iiint \limits _{v} \nabla \cdot \frac{1}{|r-r'|}dv' =...

37. ### Finding Scalar Curl and Divergence from a Picture of Vector Field

For divergence: We learned to draw a circle at different locations and to see if gas is expanding/contracting. Whenever the y-coordinate is positive, the gas seems to be expanding, and it's contracting when negative. I find it hard to tell if the gas is expanding or contracting as I go to the...
38. ### How to prove divergence of harmonic series by eps-delta proof?

Set ##\epsilon=\frac{1}{2}##. Let ##N\in \mathbb{N}## and choose ##n=N,m=2N##. Then: ##\begin{align*} \left|s_N-s_{2N}\right|&=&\left|\sum_{l=1}^N \frac{1}{l} - \sum_{l=1}^{2N} \frac{1}{l}\right|\\...
39. ### Divergence of a position vector in spherical coordinates

I know the divergence of any position vectors in spherical coordinates is just simply 3, which represents their dimension. But there's a little thing that confuses me. The vector field of A is written as follows, , and the divergence of a vector field A in spherical coordinates are written as...
40. ### Vector Divergence: Are the Expressions True?

Do I have to write something like, $$\nabla' \cdot \vec{J} = \frac{\partial J^m(r')}{\partial x'^m} + \frac{\partial J^m(t_r)}{\partial x'^m}$$ $$\nabla \cdot \vec{J} = \frac{\partial J^m(r')}{\partial x^m} + \frac{\partial J^m(t_r)}{\partial x^m} = \frac{\partial J^m(t_r)}{\partial x^m}$$...
41. ### I Divergence with Chain Rule

I am looking at the derivation for the Entropy equation for a Newtonian Fluid with Fourier Conduction law. At some point in the derivation I see \frac{1}{T} \nabla \cdot (-\kappa \nabla T) = - \nabla \cdot (\frac{\kappa \nabla T}{T}) - \frac{\kappa}{T^2}(\nabla T)^2 K is a constant and T...
42. ### Verify the convergence or divergence of a power series

At the exam i had this power series but couldn't solve it ##\sum_{k=0}^\infty (-1)^\left(k+1\right) \frac {k} {log(k+1)} (2x-1)^k## i did apply the ratio test (lets put aside for the moment (2x-1)^k ) to the series ##\sum_{k=0}^\infty \frac {k} {log(k+1)}## in order to see to what this...
43. ### I A one dimensional example of divergence: Mystery

I am trying to understand “divergence” by considering a one-dimensional example of the vector y defined by: . the parabola: y = -1 + x^2 The direction of the vector y will either be to the right ( R) when y is positive or to the Left (L). The gradient = dy/dx = Divergence = Div y = 2 x x...