MHB Proof of Sets X,Y: X⊆Y <=> P(X)⊆P(Y)

  • Thread starter Thread starter cocoabeens
  • Start date Start date
  • Tags Tags
    Proof Sets
Click For Summary
The discussion focuses on proving the equivalence between X ⊆ Y and P(X) ⊆ P(Y) for finite sets X and Y, where P() denotes the power set. The initial argument establishes that if X ⊆ Y, then for any subset A of X, A must also be a subset of Y, thereby showing P(X) ⊆ P(Y). The reverse direction requires demonstrating that if P(X) ⊆ P(Y), then every element x in X must also be in Y, concluding that X ⊆ Y. Participants clarify the logical steps and ensure the correct application of power set properties. The conclusion emphasizes the importance of precise language in mathematical proofs.
cocoabeens
Messages
6
Reaction score
0
If I have finite sets X,Y, and need to prove that X ⊆ Y <=> P(X) ⊆ P(Y), where P() denotes the power set of a set.

I started out saying that for infinite sets X,Y, x⊆X, and y⊆Y.
Given that X⊆Y, we want to show that P(B)⊆P(Y).
x⊆X, so through transitivity, x⊆Y (is this correct?). From here, I wasn't quite sure how to complete the rest.

And then I need to show the statement is true the other way, so
given P(X)⊆P(Y), show that X⊆Y.
X⊆P(X), and Y⊆P(Y), by definition of power set, so for some x⊆X, and y⊆Y, x⊆P(X), and y⊆P(Y). Am I on the right track here, or did I mess up some rules?
 
Physics news on Phys.org
Suppose we are given that $X \subseteq Y$. This means that if $x \in X$,then $x \in Y$.

Now we need to prove that $P(X) \subseteq P(Y)$. So let $A$ be any element of $P(X)$ so that: $A \subseteq X$.

This means for any $a \in A$, we have $a \in X$. Since $X \subseteq Y$, it follows then that $a \in Y$.

Since this is true for ANY $a \in A$, we conclude that $A \subseteq Y$, that is: $A \in P(Y)$. Since $A$ was arbitrary, this establishes that $P(X) \subseteq P(Y)$.

Note that finiteness did not play a role here.

To go the other way, suppose $P(X) \subseteq P(Y)$ and consider, for any $x \in X$, the element $\{x\} \in P(X)$.
 
Okay, it seems I was confusing it up with properties of power sets.

For the second part, I just work backwards, correct?

I show that the element {x}∈P(Y) because of the given condition, and thus x∈Y. Because x∈X, therefore X⊆Y? Did I confuse up some symbols?
 
That looks OK to me...in your conclusion, I would write:

"Because $x \in Y$ whenever $x \in X$, we have $X \subseteq Y$" instead of:

"Because $x \in X$, therefore $X \subseteq Y$".
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K