MHB Proof of Sets X,Y: X⊆Y <=> P(X)⊆P(Y)

  • Thread starter Thread starter cocoabeens
  • Start date Start date
  • Tags Tags
    Proof Sets
cocoabeens
Messages
6
Reaction score
0
If I have finite sets X,Y, and need to prove that X ⊆ Y <=> P(X) ⊆ P(Y), where P() denotes the power set of a set.

I started out saying that for infinite sets X,Y, x⊆X, and y⊆Y.
Given that X⊆Y, we want to show that P(B)⊆P(Y).
x⊆X, so through transitivity, x⊆Y (is this correct?). From here, I wasn't quite sure how to complete the rest.

And then I need to show the statement is true the other way, so
given P(X)⊆P(Y), show that X⊆Y.
X⊆P(X), and Y⊆P(Y), by definition of power set, so for some x⊆X, and y⊆Y, x⊆P(X), and y⊆P(Y). Am I on the right track here, or did I mess up some rules?
 
Physics news on Phys.org
Suppose we are given that $X \subseteq Y$. This means that if $x \in X$,then $x \in Y$.

Now we need to prove that $P(X) \subseteq P(Y)$. So let $A$ be any element of $P(X)$ so that: $A \subseteq X$.

This means for any $a \in A$, we have $a \in X$. Since $X \subseteq Y$, it follows then that $a \in Y$.

Since this is true for ANY $a \in A$, we conclude that $A \subseteq Y$, that is: $A \in P(Y)$. Since $A$ was arbitrary, this establishes that $P(X) \subseteq P(Y)$.

Note that finiteness did not play a role here.

To go the other way, suppose $P(X) \subseteq P(Y)$ and consider, for any $x \in X$, the element $\{x\} \in P(X)$.
 
Okay, it seems I was confusing it up with properties of power sets.

For the second part, I just work backwards, correct?

I show that the element {x}∈P(Y) because of the given condition, and thus x∈Y. Because x∈X, therefore X⊆Y? Did I confuse up some symbols?
 
That looks OK to me...in your conclusion, I would write:

"Because $x \in Y$ whenever $x \in X$, we have $X \subseteq Y$" instead of:

"Because $x \in X$, therefore $X \subseteq Y$".
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
1
Views
2K
Replies
4
Views
3K
Replies
1
Views
2K
Replies
4
Views
1K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
5
Views
2K
Back
Top