Probability that X is less than a set

In summary, the textbook states that the cdf of ##Y=g(X)## is equal to the set of all numbers less than or equal to the given number, ##g^{-1}(y)##. However, this last equality is confusing and it is not clear what is being defined by ##X##.
  • #1
34
0
Hi everyone, I am currently working through the textbook Statistical Inference by Casella and Berger. My question has to do with transformations.

Let ##X## be a random variable with cdf ##F_X(x)##. We want to find the cdf of ##Y=g(X)##. So we define the inverse mapping, ##g^{-1}(\{y\})=\{x\in S_x | g(x)=y\}##. Now, ##F_Y(y)=P(Y\leq y)=P(g(X)\leq y)=P(X\leq g^{-1}(y))##.

My textbook then states ##P(X\leq g^{-1}(y))=P(\{x\in S_x | g(x)\leq y\}##.

The issue I have is with this last equality. Are we defining the meaning of ##X## less than or equal to a set here, or am I missing some intuition on sets?
 
Physics news on Phys.org
  • #2
showzen said:
Are we defining the meaning of XX less than or equal to a set here, or am I missing some intuition on sets?
It looks like the former. You are not missing any intuition on sets. It is non-standard notation, which I have not encountered before. But if you have to use that book then you'll need to bear with their notation.
 
  • #3
showzen said:
Hi everyone, I am currently working through the textbook Statistical Inference by Casella and Berger. My question has to do with transformations.

Let ##X## be a random variable with cdf ##F_X(x)##. We want to find the cdf of ##Y=g(X)##. So we define the inverse mapping, ##g^{-1}(\{y\})=\{x\in S_x | g(x)=y\}##. Now, ##F_Y(y)=P(Y\leq y)=P(g(X)\leq y)=P(X\leq g^{-1}(y))##.

My textbook then states ##P(X\leq g^{-1}(y))=P(\{x\in S_x | g(x)\leq y\}##.

The issue I have is with this last equality. Are we defining the meaning of ##X## less than or equal to a set here, or am I missing some intuition on sets?
The notation is a little confusing. ##g^{-1}(y)## is a number, ##g^{-1}(\{y\})## is a set.
 
  • #4
If there is more than one ##x## for which ##g(x)=y## then ##g^{-1}(y)## is a set.
 
  • #5
andrewkirk said:
It looks like the former. You are not missing any intuition on sets. It is non-standard notation, which I have not encountered before. But if you have to use that book then you'll need to bear with their notation.

Is there any supplementary resource that you would recommend?
 

Suggested for: Probability that X is less than a set

Replies
1
Views
763
Replies
6
Views
1K
Replies
5
Views
1K
Replies
4
Views
1K
Replies
31
Views
1K
Replies
3
Views
796
Back
Top