MHB Proof of Supremum of $M$ Mapping into Itself

  • Thread starter Thread starter ozkan12
  • Start date Start date
  • Tags Tags
    Proof Supremum
Click For Summary
The discussion centers on proving that the supremum of the diameter of the set \( O(x,\infty) \) equals the supremum of the diameters of the sets \( O(x,n) \) for \( n \in \mathbb{N} \). It is established that \( O(x,n) \) is contained within \( O(x,\infty) \), leading to the conclusion that the supremum of \( \And[O(x,n)] \) is less than or equal to \( \And[O(x,\infty)] \). The reverse inequality is demonstrated by showing that any two points in \( O(x,\infty) \) can be found in some \( O(x,n) \), thus bounding their distances. The final conclusion is that \( \And[O(x,\infty)] \) is also less than or equal to the supremum of \( \And[O(x,n)] \), confirming the equality. The discussion effectively clarifies the relationship between these sets and their diameters in a metric space.
ozkan12
Messages
145
Reaction score
0
Let $f$ be a mapping of a metric space $M$ into itself. For $A\subset M$ let $\And(A)=sup\left\{d(a,b);a,b\in A\right\}$ and for each $x\in M$, let $O(x,n)=\left\{x,Tx,...{T}^{n}x\right\}$ $n=1,2,3...$

$O(x,\infty)=\left\{x,Tx,...\right\}$ Please prove that $\And[O(x,\infty)]=sup\left\{\And[O(x,n)]:n\in\Bbb{N}\right\}$...Thank you for your attention...Best wishes...
 
Physics news on Phys.org
ozkan12 said:
Let $f$ be a mapping of a metric space $M$ into itself. For $A\subset M$ let $\And(A)=sup\left\{d(a,b);a,b\in A\right\}$ and for each $x\in M$, let $O(x,n)=\left\{x,Tx,...{T}^{n}x\right\}$ $n=1,2,3...$

$O(x,\infty)=\left\{x,Tx,...\right\}$ Please prove that $\And[O(x,\infty)]=sup\left\{\And[O(x,n)]:n\in\Bbb{N}\right\}$.
First comment: I assume that $f$ is the same as $T$ here?

Second comment: Informally, you should think of this function $\&(A)$ as being the diameter of the set $A$. It is the sup of the distance between any two points of $A$.

Now coming on to the sets $O(x,n)$ and $O(x,\infty)$, each set $O(x,n)$ is contained in $O(x,\infty)$, so the diameter of $O(x,n)$ is less than or equal to the diameter of $O(x,\infty)$. It follows that $\sup\left\{\And[O(x,n)]:n\in\Bbb{N}\right\} \leqslant \And[O(x,\infty)]$.

To prove the reverse inequality, notice that if you take any two points $T^px$ and $T^qx$ in $\And[O(x,\infty)]$, they must be contained in one of the sets $O(x,n)$ (namely, take $n$ to be whichever of $p$, $q$ is larger). So $d(T^px,T^qx) \leqslant \&[O(x,n)] \leqslant \sup\left\{\And[O(x,n)]:n\in\Bbb{N}\right\}$. Now take the sup over all $p$ and $q$ to conclude that $\And[O(x,\infty)] \leqslant \sup\left\{\And[O(x,n)]:n\in\Bbb{N}\right\}$.
 
Dear professor,

First of all, thank you so much...But I didnt understant second part...How we get conclude that $\And[O(x,\infty)]=sup\left\{\And[O(x,n)]:n\in\Bbb{N}\right\}$ by taking sup for all p and q... Thank you for your attention...Best wishes...:)
 
Last edited:
lol I read this thread title too fast and for a minute I thought it said 'proof of superman'!
 
Suppose that $I$ is an index set and $f$ is a function that maps indices into numbers (or, more generally, to elements of an ordered set).

The definition of supremum has two clauses.

(1) $$f(i)\le \sup_{j\in I}f(j)$$ for all $i\in I$.

(2) If $f(i)\le s'$ for all $i\in I$, then $$\sup_{i\in I}f(i)\le s'$$.

Clause (1) bounds the supremum from below, and clause (2) bounds it from above.

Lemma 1. If $A\subseteq B\subseteq I$, then $\sup\limits_{i\in A}f(i)\le\sup\limits_{i\in B}f(i)$.

Proof. For all $i\in B$, including $i\in A$, we have $f(i)\le\sup\limits_{i\in B}f(i)$ by (1); therefore, $\sup\limits_{i\in A}f(i)\le\sup\limits_{i\in B}f(i)$ by (2).

Now I rewrite Opalg's proof in more detail.

Lemma 2. $\sup_{n\in\Bbb{N}}\And[O(x,n)] \le \And[O(x,\infty)]$.

Proof. $O(x,n)\subset O(x,\infty)$; therefore,
\[
\And[O(x,n)]=
\sup\limits_{a,b\in O(x,n)}d(a,b)\le
\sup\limits_{a,b\in O(x,\infty)}d(a,b)=
\And[O(x,\infty)]\qquad(3)
\]
by Lemma 1. In applying the lemma, we instantiate $I$ with $M^2$ (i.e., the set of all ordered pairs $\langle a,b\rangle$ where $a,b\in M$), $A$ with $O(x,n)^2$, $B$ with $O(x,\infty)^2$, and for $i=\langle a,b\rangle\in M$ we set $f(i)=d(a,b)$. Now by applying clause (2) of the definition above to (3), we get
\[
\sup\limits_{n\in\mathbb{N}}\And[O(x,n)]\le \And[O(x,\infty)],
\]
as required. In applying (2) we set $I=\mathbb{N}$ and $f(i)=\And[O(x,i)]$ for $i\in\mathbb{N}$.

Lemma 3. $\And[O(x,\infty)]\le\sup_{n\in\Bbb{N}}\And[O(x,n)]$.

Proof. As Opalg explains, for all $a,b\in O(x,\infty)$ there exists an $n\in\Bbb N$ such that $a,b\in O(x,n)$. Therefore, for all $a,b\in O(x,\infty)$ we have
\begin{align}
d(a,b)&\le\sup\limits_{a,b\in O(x,n)}d(a,b)&&\text{by (1)}\\
&=\And[O(x,n)]\\
&\le\sup_{n\in\Bbb N}\And[O(x,n)]&&\text{by (1)}
\end{align}
Now we apply (2) to $d(a,b)\le\sup\limits_{n\in\Bbb N}\And[O(x,n)]$ and get
\[
\sup_{a,b\in O(x,\infty)}\le\sup_{n\in\Bbb N}\And[O(x,n)].
\]

The required statement is the conjunction of Lemmas 2 and 3.
 
Dear Makarov,

You are very good, thank you for everything...This is very helpful for me...:) Thank you for your attention...Best wishes :)
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K