Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Proof of the convolution theorem for laplace transform

  1. Dec 28, 2007 #1
    My textbook provides a proof but there's one thing about the proof i do not understand

    it starts assuming L{f(t)} = the laplace integral with the f(t) changed to f(a)

    same goes with L{g(t)} as it changes it to g(b)

    i understand the big picture>>starting from a product of 2 L transforms and working ur way back to an expression in terms of the two functions transformed, but how can u change the variable for f and g when we started off stating f of T and g of T.???
  2. jcsd
  3. Dec 28, 2007 #2
    Am I not presenting my questions clearly?
  4. Dec 28, 2007 #3

    [tex]F(s)=\mathcal{L}\{f(t)\}=\int_0^{+\infty}e^{-s\,t}\,d\,t\,f(t) \quad \text{and} \quad
    G(s)=\mathcal{L}\{g(t)\}=\int_0^{+\infty}e^{-s\,t}\,g(t)\,d\,t [/tex]

    be the two Laplace transormations and let's denote

    [tex](f\star g)(t)=\int_0^{+\infty}f(\tau)\,g(t-\tau)\,d\,\tau [/tex]

    the convolution of [tex]f,\,g[/tex].

    Thus the Laplace transform for the convolution would be

    [tex]\mathcal{L}\{(f\star g)(t)\}=\int_0^{+\infty}e^{-s\,t}\left( \int_0^{+\infty}f(\tau)\,g(t-\tau)\,d\,\tau \right)\,d\,t =\int_0^{+\infty}\int_0^{+\infty}e^{-s\,t}f(\tau)\,g(t-\tau)\,d\,\tau \,d\,t \quad (1)[/tex]

    The above double integral is to be evaluated in the domain [tex] \mathcal{D}=\{(t,\tau): t \in (0,+\infty),\tau \in (0,+\infty)\} [/tex].

    Performing the change of variables
    [tex](t,\tau)\rightarrow (u,v): t=u+v, \, \tau=v [/tex] with [tex] u \in (0,+\infty),v \in (0,+\infty) [/tex] we have [tex]d\,\tau\,d\,t=d\,u\,d\,v[/tex] since the Jacobian equals to 1. Thus (1) becomes

    [tex]\mathcal{L}\{(f\star g)(t)\}=\int_0^{+\infty}\int_0^{+\infty}e^{-s\,(u+v)}f(u)\,g(v)\,d\,u\,d\,v= \int_0^{+\infty}e^{-s\,u}f(u)\,d\,u \cdot \int_0^{+\infty}e^{-s\,v}\,g(v)\,d\,v[/tex]

    yielding to

    [tex]\mathcal{L}\{(f\star g)(t)\}=\mathcal{L}\{f(t)\} \cdot \mathcal{L}\{g(t)\} [/tex]

    Nothing but double integrals! :smile:
  5. May 10, 2010 #4
    Isn't the laplace convolution between 0 and t rather than 0 and infinity?
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook