MHB Proof: $\tan\,6^{\circ}\tan\,42^{\circ}\tan\,66^{\circ}\tan\78^{\circ}=1$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Proof Trigonometry
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
prove that $\tan\,6^{\circ}\tan\,42^{\circ}\tan\,66^{\circ}\tan\,78^{\circ} = 1$
 
Mathematics news on Phys.org
My solution:
We know that

$\sin 6^{\circ}\cdot \sin 54^{\circ}\cdot \sin 66^{\circ}=\dfrac{\sin 18^{\circ}}{4} $ and $\cos 6^{\circ}\cdot \cos 54^{\circ}\cdot \cos 66^{\circ}=\dfrac{\cos 18^{\circ}}{4} $

Dividing first by the second we get:

$\tan 6^{\circ}\cdot \tan 54^{\circ}\cdot \tan 66^{\circ}=\tan 18^{\circ} $

$\tan 6^{\circ}\cdot \tan 66^{\circ}=\dfrac{\tan 18^{\circ}}{\tan 54^{\circ}}$---(*)

Also, we have that

$\sin 18^{\circ}\cdot \sin 42^{\circ}\cdot \sin 78^{\circ}=\dfrac{\sin 54^{\circ}}{4} $ and $\cos 18^{\circ}\cdot \cos 42^{\circ}\cdot \cos 78^{\circ}=\dfrac{\cos 54^{\circ}}{4} $

Divide again these two equations yields $\tan 18^{\circ}\cdot \tan 42^{\circ}\cdot \tan 78^{\circ}=\tan 54^{\circ} $ and rearrange it to obtain $\dfrac{\tan 18^{\circ}}{\tan 54^{\circ}}=\dfrac{1}{\tan 42^{\circ}\cdot \tan 78^{\circ}}$ and substitute this into (*) the result follows and we're done.
 
anemone said:
My solution:
We know that

$\sin 6^{\circ}\cdot \sin 54^{\circ}\cdot \sin 66^{\circ}=\dfrac{\sin 18^{\circ}}{4} $ and $\cos 6^{\circ}\cdot \cos 54^{\circ}\cdot \cos 66^{\circ}=\dfrac{\cos 18^{\circ}}{4} $

Dividing first by the second we get:

$\tan 6^{\circ}\cdot \tan 54^{\circ}\cdot \tan 66^{\circ}=\tan 18^{\circ} $

$\tan 6^{\circ}\cdot \tan 66^{\circ}=\dfrac{\tan 18^{\circ}}{\tan 54^{\circ}}$---(*)

Also, we have that

$\sin 18^{\circ}\cdot \sin 42^{\circ}\cdot \sin 78^{\circ}=\dfrac{\sin 54^{\circ}}{4} $ and $\cos 18^{\circ}\cdot \cos 42^{\circ}\cdot \cos 78^{\circ}=\dfrac{\cos 54^{\circ}}{4} $

Divide again these two equations yields $\tan 18^{\circ}\cdot \tan 42^{\circ}\cdot \tan 78^{\circ}=\tan 54^{\circ} $ and rearrange it to obtain $\dfrac{\tan 18^{\circ}}{\tan 54^{\circ}}=\dfrac{1}{\tan 42^{\circ}\cdot \tan 78^{\circ}}$ and substitute this into (*) the result follows and we're done.

good solution
here is mine

using $\tan\theta\tan(60^\circ -\theta)\tan(60^\circ + \theta) = \tan3\theta$
for a proof see below

we have taking $\theta=6^\circ$
$\tan6^\circ \tan54^\circ \tan66^\circ = \tan18^\circ\cdots{1}$
taking $\theta=18^\circ$
$\tan18^\circ \tan42^\circ \tan78^\circ = \tan54^\circ\cdots{2}$

multiplying above (1) and (2) we get

$\tan6^\circ \tan42^\circ \tan66^\circ \tan78^\circ=1 $
to prove

$\tan\theta\tan(60^\circ -\theta)\tan(60^\circ + \theta) = \tan3\theta$

$\tan(60^\circ -\theta)\tan(60^\circ + \theta)$
= $\dfrac{\tan60^\circ-\tan\theta}{1+ \tan60^\circ\tan \theta}\dfrac{\tan60^\circ+\tan\theta}{1- \tan60^\circ\tan \theta}$

= $\dfrac{\tan^260^\circ-\tan^2\theta}{1- \tan^260^\circ\tan^2 \theta}$
= $\dfrac{3-\tan^2\theta}{1- 3\tan^2 \theta}$so

$\tan\theta\tan(60^\circ -\theta)\tan(60^\circ + \theta)$

= $\dfrac{3\tan\theta-\tan^3\theta}{1- 3\tan^2 \theta}$
= $\tan3\theta$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top