MHB Proof: $\tan\,6^{\circ}\tan\,42^{\circ}\tan\,66^{\circ}\tan\78^{\circ}=1$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Proof Trigonometry
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
prove that $\tan\,6^{\circ}\tan\,42^{\circ}\tan\,66^{\circ}\tan\,78^{\circ} = 1$
 
Mathematics news on Phys.org
My solution:
We know that

$\sin 6^{\circ}\cdot \sin 54^{\circ}\cdot \sin 66^{\circ}=\dfrac{\sin 18^{\circ}}{4} $ and $\cos 6^{\circ}\cdot \cos 54^{\circ}\cdot \cos 66^{\circ}=\dfrac{\cos 18^{\circ}}{4} $

Dividing first by the second we get:

$\tan 6^{\circ}\cdot \tan 54^{\circ}\cdot \tan 66^{\circ}=\tan 18^{\circ} $

$\tan 6^{\circ}\cdot \tan 66^{\circ}=\dfrac{\tan 18^{\circ}}{\tan 54^{\circ}}$---(*)

Also, we have that

$\sin 18^{\circ}\cdot \sin 42^{\circ}\cdot \sin 78^{\circ}=\dfrac{\sin 54^{\circ}}{4} $ and $\cos 18^{\circ}\cdot \cos 42^{\circ}\cdot \cos 78^{\circ}=\dfrac{\cos 54^{\circ}}{4} $

Divide again these two equations yields $\tan 18^{\circ}\cdot \tan 42^{\circ}\cdot \tan 78^{\circ}=\tan 54^{\circ} $ and rearrange it to obtain $\dfrac{\tan 18^{\circ}}{\tan 54^{\circ}}=\dfrac{1}{\tan 42^{\circ}\cdot \tan 78^{\circ}}$ and substitute this into (*) the result follows and we're done.
 
anemone said:
My solution:
We know that

$\sin 6^{\circ}\cdot \sin 54^{\circ}\cdot \sin 66^{\circ}=\dfrac{\sin 18^{\circ}}{4} $ and $\cos 6^{\circ}\cdot \cos 54^{\circ}\cdot \cos 66^{\circ}=\dfrac{\cos 18^{\circ}}{4} $

Dividing first by the second we get:

$\tan 6^{\circ}\cdot \tan 54^{\circ}\cdot \tan 66^{\circ}=\tan 18^{\circ} $

$\tan 6^{\circ}\cdot \tan 66^{\circ}=\dfrac{\tan 18^{\circ}}{\tan 54^{\circ}}$---(*)

Also, we have that

$\sin 18^{\circ}\cdot \sin 42^{\circ}\cdot \sin 78^{\circ}=\dfrac{\sin 54^{\circ}}{4} $ and $\cos 18^{\circ}\cdot \cos 42^{\circ}\cdot \cos 78^{\circ}=\dfrac{\cos 54^{\circ}}{4} $

Divide again these two equations yields $\tan 18^{\circ}\cdot \tan 42^{\circ}\cdot \tan 78^{\circ}=\tan 54^{\circ} $ and rearrange it to obtain $\dfrac{\tan 18^{\circ}}{\tan 54^{\circ}}=\dfrac{1}{\tan 42^{\circ}\cdot \tan 78^{\circ}}$ and substitute this into (*) the result follows and we're done.

good solution
here is mine

using $\tan\theta\tan(60^\circ -\theta)\tan(60^\circ + \theta) = \tan3\theta$
for a proof see below

we have taking $\theta=6^\circ$
$\tan6^\circ \tan54^\circ \tan66^\circ = \tan18^\circ\cdots{1}$
taking $\theta=18^\circ$
$\tan18^\circ \tan42^\circ \tan78^\circ = \tan54^\circ\cdots{2}$

multiplying above (1) and (2) we get

$\tan6^\circ \tan42^\circ \tan66^\circ \tan78^\circ=1 $
to prove

$\tan\theta\tan(60^\circ -\theta)\tan(60^\circ + \theta) = \tan3\theta$

$\tan(60^\circ -\theta)\tan(60^\circ + \theta)$
= $\dfrac{\tan60^\circ-\tan\theta}{1+ \tan60^\circ\tan \theta}\dfrac{\tan60^\circ+\tan\theta}{1- \tan60^\circ\tan \theta}$

= $\dfrac{\tan^260^\circ-\tan^2\theta}{1- \tan^260^\circ\tan^2 \theta}$
= $\dfrac{3-\tan^2\theta}{1- 3\tan^2 \theta}$so

$\tan\theta\tan(60^\circ -\theta)\tan(60^\circ + \theta)$

= $\dfrac{3\tan\theta-\tan^3\theta}{1- 3\tan^2 \theta}$
= $\tan3\theta$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
5K