MHB Proof: $\tan\,6^{\circ}\tan\,42^{\circ}\tan\,66^{\circ}\tan\78^{\circ}=1$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Proof Trigonometry
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
prove that $\tan\,6^{\circ}\tan\,42^{\circ}\tan\,66^{\circ}\tan\,78^{\circ} = 1$
 
Mathematics news on Phys.org
My solution:
We know that

$\sin 6^{\circ}\cdot \sin 54^{\circ}\cdot \sin 66^{\circ}=\dfrac{\sin 18^{\circ}}{4} $ and $\cos 6^{\circ}\cdot \cos 54^{\circ}\cdot \cos 66^{\circ}=\dfrac{\cos 18^{\circ}}{4} $

Dividing first by the second we get:

$\tan 6^{\circ}\cdot \tan 54^{\circ}\cdot \tan 66^{\circ}=\tan 18^{\circ} $

$\tan 6^{\circ}\cdot \tan 66^{\circ}=\dfrac{\tan 18^{\circ}}{\tan 54^{\circ}}$---(*)

Also, we have that

$\sin 18^{\circ}\cdot \sin 42^{\circ}\cdot \sin 78^{\circ}=\dfrac{\sin 54^{\circ}}{4} $ and $\cos 18^{\circ}\cdot \cos 42^{\circ}\cdot \cos 78^{\circ}=\dfrac{\cos 54^{\circ}}{4} $

Divide again these two equations yields $\tan 18^{\circ}\cdot \tan 42^{\circ}\cdot \tan 78^{\circ}=\tan 54^{\circ} $ and rearrange it to obtain $\dfrac{\tan 18^{\circ}}{\tan 54^{\circ}}=\dfrac{1}{\tan 42^{\circ}\cdot \tan 78^{\circ}}$ and substitute this into (*) the result follows and we're done.
 
anemone said:
My solution:
We know that

$\sin 6^{\circ}\cdot \sin 54^{\circ}\cdot \sin 66^{\circ}=\dfrac{\sin 18^{\circ}}{4} $ and $\cos 6^{\circ}\cdot \cos 54^{\circ}\cdot \cos 66^{\circ}=\dfrac{\cos 18^{\circ}}{4} $

Dividing first by the second we get:

$\tan 6^{\circ}\cdot \tan 54^{\circ}\cdot \tan 66^{\circ}=\tan 18^{\circ} $

$\tan 6^{\circ}\cdot \tan 66^{\circ}=\dfrac{\tan 18^{\circ}}{\tan 54^{\circ}}$---(*)

Also, we have that

$\sin 18^{\circ}\cdot \sin 42^{\circ}\cdot \sin 78^{\circ}=\dfrac{\sin 54^{\circ}}{4} $ and $\cos 18^{\circ}\cdot \cos 42^{\circ}\cdot \cos 78^{\circ}=\dfrac{\cos 54^{\circ}}{4} $

Divide again these two equations yields $\tan 18^{\circ}\cdot \tan 42^{\circ}\cdot \tan 78^{\circ}=\tan 54^{\circ} $ and rearrange it to obtain $\dfrac{\tan 18^{\circ}}{\tan 54^{\circ}}=\dfrac{1}{\tan 42^{\circ}\cdot \tan 78^{\circ}}$ and substitute this into (*) the result follows and we're done.

good solution
here is mine

using $\tan\theta\tan(60^\circ -\theta)\tan(60^\circ + \theta) = \tan3\theta$
for a proof see below

we have taking $\theta=6^\circ$
$\tan6^\circ \tan54^\circ \tan66^\circ = \tan18^\circ\cdots{1}$
taking $\theta=18^\circ$
$\tan18^\circ \tan42^\circ \tan78^\circ = \tan54^\circ\cdots{2}$

multiplying above (1) and (2) we get

$\tan6^\circ \tan42^\circ \tan66^\circ \tan78^\circ=1 $
to prove

$\tan\theta\tan(60^\circ -\theta)\tan(60^\circ + \theta) = \tan3\theta$

$\tan(60^\circ -\theta)\tan(60^\circ + \theta)$
= $\dfrac{\tan60^\circ-\tan\theta}{1+ \tan60^\circ\tan \theta}\dfrac{\tan60^\circ+\tan\theta}{1- \tan60^\circ\tan \theta}$

= $\dfrac{\tan^260^\circ-\tan^2\theta}{1- \tan^260^\circ\tan^2 \theta}$
= $\dfrac{3-\tan^2\theta}{1- 3\tan^2 \theta}$so

$\tan\theta\tan(60^\circ -\theta)\tan(60^\circ + \theta)$

= $\dfrac{3\tan\theta-\tan^3\theta}{1- 3\tan^2 \theta}$
= $\tan3\theta$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top