arsenaler said:
Let $\,a>0\,,\,a\neq1\,$ be a real number. We can prove by using the continuity of $\ln n$ function that $\;\lim\limits_{n\to\infty}\dfrac{\log_an}n=0\;$
However, this problem appears in my problems book quite early right after the definition of $\epsilon$-language definition of limit of a sequence, the reader is supposed not to know anything about continuity.
My question is: Is there any proof for this result in $\epsilon-delta$ language that is more elementary?
Please help me.
Thanks.
To prove that $\displaystyle \begin{align*} \lim_{n \to \infty}{ \frac{\log_a{\left( n \right) }}{n} } = 0 \end{align*}$ we would need to prove that:
For any $\displaystyle \begin{align*} \epsilon > 0 \end{align*}$ there exists an $\displaystyle \begin{align*} N > 0 \end{align*}$ such that $\displaystyle \begin{align*} n > N \implies \left| \frac{\log_a{\left( n \right) }}{n} - 0 \right| < \epsilon \end{align*}$.
So to do this:
$\displaystyle \begin{align*} \left| \frac{\log_a{\left( n \right) }}{n} - 0 \right| &< \epsilon \\
\left| \log_a{\left( n \right) } \right| &< \epsilon \left| n \right| \\
\left| \frac{\ln{ \left( n \right) }}{\ln{ \left( a \right) }} \right| &< \epsilon \left| n \right| \\
\left| \ln{ \left( n \right) } \right| &< \epsilon \left| \ln{ \left( a \right) } \right| \left| n \right| \end{align*}$
Now, obviously we are considering what happens for very large $\displaystyle \begin{align*} n \end{align*}$, so it is obvious that there is no reason why we need to consider all $\displaystyle \begin{align*} n > 0 \end{align*}$, so why don't we consider say $\displaystyle \begin{align*} n > \mathrm{e} \implies \ln{ \left( n \right) } > 1 \end{align*}$.
Therefore, if $\displaystyle \begin{align*} n > \mathrm{e} \end{align*}$
$\displaystyle \begin{align*} 1 < \left| \ln{ \left( n \right) } \right| &< \epsilon \left| \ln{ \left( a \right) } \right| \left| n \right| \\
1 &< \epsilon \left| \ln{ \left( a \right) } \right| \left| n \right| \\
\frac{1}{\epsilon \left| \ln{ \left( a \right) } \right| } &< \left| n \right| \\
\left| n \right| &> \frac{1}{\epsilon \left| \ln{ \left( a \right) } \right| } \end{align*}$
So provided that we ensure we start with an $\displaystyle \begin{align*} n > \mathrm{e} \end{align*}$, we can set $\displaystyle \begin{align*} N = \frac{1}{\epsilon \left| \ln{ \left( a \right) } \right| } \end{align*}$ and then you can write the proof.