Proof that log2(i) is rational but I think it is wrong

  • Thread starter Thread starter The UPC P
  • Start date Start date
  • Tags Tags
    Proof Rational
Click For Summary
The discussion centers on the rationality of log2(i), where the initial proof incorrectly concludes that log2(i) is rational by setting m=0 and n=4, leading to log2(i) = 0. However, it is clarified that log2(i) is actually irrational because the properties of logarithms do not apply to complex numbers in the same way they do for real numbers. The complex logarithm introduces multiple values, complicating the assertion that log2(i) can be expressed as a simple fraction of integers. The confusion arises from misapplying real logarithmic properties to a complex context, highlighting the need for a proper understanding of complex logarithms. Ultimately, the conclusion is that log2(i) is not rational, and the proof's assumptions are flawed.
The UPC P
Messages
9
Reaction score
0
m and n are integers.

log2(i) = m/n
2^(m/n) = i
2^m = i^n
2^0 = i^4 = 1

so that means that log2(i) is rational because there are integers n and m so that log2(i) = m/n , they are m=0 and n=4.

But what I do get about this proof is that it seems to imply that log2(i) = 0/4 = 0 while google says it is 2.26618007 i. So what is going on here? Is my proof wrong?
 
Mathematics news on Phys.org
The UPC P said:
m and n are integers.

log2(i) = m/n
2^(m/n) = i
2^m = i^n
What property of exponents justifies the step above?
The UPC P said:
2^0 = i^4 = 1
So you're saying that ##\log_2(i) = \frac 0 4 = 0##? That's equivalent to saying that ##i = 2^0##.
The UPC P said:
so that means that log2(i) is rational because there are integers n and m so that log2(i) = m/n , they are m=0 and n=4.

But what I do get about this proof is that it seems to imply that log2(i) = 0/4 = 0 while google says it is 2.26618007 i. So what is going on here? Is my proof wrong?
 
##log_2 i ## is not rational, so you start at a false assumption.
The complex logarithm function does not obey the same laws as the real one. You may not mix both concepts just as you like.
##log_2 i = \frac{ln i}{ln 2}## and ##ln## ##i## is defined via the exponential function. i.e. ##ln ## ##i = x## means ##e^x = i## and therefore
##x = \frac{\pi}{2}i## for the main branch.
 
  • Like
Likes micromass
Thanks for the help! Hoewever I am still having problems.
I want to make a proof by contradiction if log2(i) is irrational so that is why I start with a false assumption. I now made a new proof but I still do not get it:

log2(i) = m/n
ln(i)/ln(2) = m/n
ln(i) = ln(2)*m/n
e^(ln(2)*m/n) = i
e^(ln(2)*m/n)^n = i^n
e^((ln(2)*m/n)*n) = i^n
e^(ln(2)*m) = i^n
e^ln(2)^m = i^n
2^m = i^n

So this still means that m=0 and n=4 works out even though there should not exist integers n and m for which log2(i) = m/n holds!

However if I do

2^m = i^n
2^m^(1/n) = i^n^(1/n)
2^(m*(1/n)) = i^(n*(1/n))
2^(m/n) = i^1
2^(m/n) = i

Then it makes sense because 2^(m/n) can never be i since i is imaginary.

So where is my mistake in my new proof by contradiction?
 
The UPC P said:
Thanks for the help! Hoewever I am still having problems.
I want to make a proof by contradiction if log2(i) is irrational so that is why I start with a false assumption. I now made a new proof but I still do not get it:

log2(i) = m/n
ln(i)/ln(2) = m/n
You're using the ordinary properties of the logarithm (which is defined only for positive real numbers) when they don't apply. You need to be looking at the complex logarithm. See https://en.wikipedia.org/wiki/Complex_logarithm.

The UPC P said:
ln(i) = ln(2)*m/n
e^(ln(2)*m/n) = i
e^(ln(2)*m/n)^n = i^n
e^((ln(2)*m/n)*n) = i^n
e^(ln(2)*m) = i^n
e^ln(2)^m = i^n
2^m = i^n

So this still means that m=0 and n=4 works out even though there should not exist integers n and m for which log2(i) = m/n holds!

However if I do

2^m = i^n
2^m^(1/n) = i^n^(1/n)
2^(m*(1/n)) = i^(n*(1/n))
2^(m/n) = i^1
2^(m/n) = i

Then it makes sense because 2^(m/n) can never be i since i is imaginary.

So where is my mistake in my new proof by contradiction?
 
Mark44 said:
You're using the ordinary properties of the logarithm (which is defined only for positive real numbers) when they don't apply. You need to be looking at the complex logarithm. See https://en.wikipedia.org/wiki/Complex_logarithm.

And it is more complicated, in that , unless restricted, ln_2(i) is a set, not a single value. so one may ask if there exist a single value of ln_2(i) which is rational.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
4
Views
2K
Replies
4
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
5K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K