MHB Proof the set with the multiplication is a group

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

$\newcommand{\Z}{\mathbb{Z}}$Suppose the set is defined as:
$\begin{equation*}
{(\Z/n\Z)}^{\times}=\left\{\bar{a}\in \Z/n\Z|\ \text{there exists a}\ \bar{c}\in \Z/n\Z\ \text{with}\ \bar{a}\cdot\bar{c}=1\right\}
\end{equation*}$
for $n>1$
I am having some trouble
Proving that ${(\Z/n\Z)}^{\times}$ is an abelian group under multiplication on ${(\Z/n\Z)}$.

My Attempt:
  • WTS: Multiplication on ${(\Z/n\Z)}^{\times}$ is closed.
By exercise 5 in homework 2, if $[a], \in {(\Z/n\Z)}^{\times}$, then $[a]\cdot \in {(\Z/n\Z)}^{\times}$. So we know that multiplication is closed under ${(\Z/n\Z)}^{\times}$.

  • Associativity:
Let $[a],,[c]\in{(\Z/n\Z)}^{\times}$ . We know that the $\Z$ is associative.
$[a]\cdot(\cdot[c])=[a] \cdot [bc]=[abc]=[ab] \cdot [c]=([a]\cdot) \cdot [c]$.
  • Identity
We know that $[1]$ is the identity for ${(\Z/n\Z)}^{\times}$.
$[1]\cdot[x]=[1\cdot x]= [x], \forall [x] \in {(\Z/n\Z)}^{\times}$
$[x] \cdot [1]=[x \cdot 1]=[x], \forall [x] \in {(\Z/n\Z)}^{\times}$
  • inverse
We are given the right side inverse by the definition of the set. We need to show that the left side exist ( here is where I am having troubles).

Thanks,
Cbarker1
 
Physics news on Phys.org
Hi Cbarker1,

Let's do commutativity first:
$$\forall [a],\in(\mathbb Z/n\mathbb Z)^\times:[a]\cdot=[ab]=[ba]=\cdot[a]$$

Now we can apply commutativity of multiplication to find the left side inverse.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 26 ·
Replies
26
Views
713
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 0 ·
Replies
0
Views
713
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 17 ·
Replies
17
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
822
  • · Replies 3 ·
Replies
3
Views
2K