MHB Proof the set with the multiplication is a group

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

$\newcommand{\Z}{\mathbb{Z}}$Suppose the set is defined as:
$\begin{equation*}
{(\Z/n\Z)}^{\times}=\left\{\bar{a}\in \Z/n\Z|\ \text{there exists a}\ \bar{c}\in \Z/n\Z\ \text{with}\ \bar{a}\cdot\bar{c}=1\right\}
\end{equation*}$
for $n>1$
I am having some trouble
Proving that ${(\Z/n\Z)}^{\times}$ is an abelian group under multiplication on ${(\Z/n\Z)}$.

My Attempt:
  • WTS: Multiplication on ${(\Z/n\Z)}^{\times}$ is closed.
By exercise 5 in homework 2, if $[a], \in {(\Z/n\Z)}^{\times}$, then $[a]\cdot \in {(\Z/n\Z)}^{\times}$. So we know that multiplication is closed under ${(\Z/n\Z)}^{\times}$.

  • Associativity:
Let $[a],,[c]\in{(\Z/n\Z)}^{\times}$ . We know that the $\Z$ is associative.
$[a]\cdot(\cdot[c])=[a] \cdot [bc]=[abc]=[ab] \cdot [c]=([a]\cdot) \cdot [c]$.
  • Identity
We know that $[1]$ is the identity for ${(\Z/n\Z)}^{\times}$.
$[1]\cdot[x]=[1\cdot x]= [x], \forall [x] \in {(\Z/n\Z)}^{\times}$
$[x] \cdot [1]=[x \cdot 1]=[x], \forall [x] \in {(\Z/n\Z)}^{\times}$
  • inverse
We are given the right side inverse by the definition of the set. We need to show that the left side exist ( here is where I am having troubles).

Thanks,
Cbarker1
 
Physics news on Phys.org
Hi Cbarker1,

Let's do commutativity first:
$$\forall [a],\in(\mathbb Z/n\mathbb Z)^\times:[a]\cdot=[ab]=[ba]=\cdot[a]$$

Now we can apply commutativity of multiplication to find the left side inverse.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top