Proof with Induction 3/2-5/6+7/12-9/20+11/30-....

  • Context: MHB 
  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Induction Proof
Click For Summary
SUMMARY

The discussion focuses on proving the series sum represented by the expression $\dfrac{(-1)^{n+1}(2n+1)}{n^2+n}$ through mathematical induction. Participants identify the numerators as odd numbers (2n + 1) and derive the denominators using Newton's divided difference formula, concluding that they follow the quadratic pattern of $n(n+1)$. The proof involves establishing the base case and transitioning from n=k to n=k+1, ultimately leading to the simplification of the expression to validate the induction hypothesis.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with Newton's divided difference formula
  • Knowledge of sequences and series
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study mathematical induction proofs in detail
  • Explore Newton's divided difference formula applications
  • Learn about sequences and series convergence
  • Practice algebraic manipulation with complex fractions
USEFUL FOR

Mathematicians, educators, students in advanced mathematics courses, and anyone interested in mastering proof techniques and series summation methods.

Yankel
Messages
390
Reaction score
0
Hello all,

In the attached picture there is an equation. I need to fill the general expression on the left hand side, and to prove by induction that the sum is equal to the expression in the right hand side.

I am not sure how to find the general expression. Can you kindly assist ?

Thank you !

View attachment 9516
 

Attachments

  • indu.PNG
    indu.PNG
    1.3 KB · Views: 153
Mathematics news on Phys.org
$\dfrac{(-1)^{n+1}(2n+1)}{n^2+n}$
 
The numerators are clearly the odd numbers so: 2n+ 1.

The denominators are a little harder! I would have used "Newton's "divided difference" formula: adding a first term of "0", the "first differences" are 2- 0= 2, 6- 2= 4, 12- 6= 6, 20- 12= 8, 30- 20= 10; the "second differences" are 4- 2= 2, 6- 4= 2, 8- 6= 2, 10- 8= 2. Those are all "2" so all further "differences" are 0. The denominators are given by the quadratic 0+ 2n+ (2/2)n(n-1)= n^2+ n.

Of course, since the +/- sign alternates we need -1 to a power. The first term, with n= 1, is positive so that can be either (-1)^{n+1} or (-1)^{n-1}.
 
I saw sequence of denominators, $2 ,6,12,20,30,...$, as

$(1\cdot 2), (2 \cdot 3), (3 \cdot 4), ( 4 \cdot 5),(5 \cdot 6), ... , [n \cdot (n+1)] , ...$
 
I tried proving this by induction using the general statement that skeeter wrote, but I couldn't do it.

I am stuck at the n=k+1 stage...
 
Last edited:
note $1 + \dfrac{(-1)^{n+1}}{n+1} = \dfrac{(n+1) + (-1)^{n+1}}{n+1}$
${\color{red}{\dfrac{3}{2} - \dfrac{5}{6} + \dfrac{7}{12} - \dfrac{9}{20} + ... + \dfrac{(-1)^{n+1}(2n+1)}{n(n+1)}}} + \dfrac{(-1)^{(n+1)+1}[2(n+1)+1]}{(n+1)[(n+1)+1]}$

${\color{red}\dfrac{(n+1) + (-1)^{n+1}}{n+1}} + \dfrac{(-1)^{n+2}(2n+3)}{(n+1)(n+2)}$

$\dfrac{(n+1)(n+2) + (-1)^{n+1}(n+2)}{(n+1)(n+2)} + \dfrac{(-1)^{n+2}(2n+3)}{(n+1)(n+2)}$

$\dfrac{(n+1)(n+2) + (-1)^{n+1}(n+2) - (-1)^{n+1}(2n+3) }{(n+1)(n+2)}$

$\dfrac{(n+1)(n+2) + (-1)^{n+1}[(n+2) - (2n+3)] }{(n+1)(n+2)}$

$\dfrac{(n+1)(n+2) + (-1)^{n+2}(n+1) }{(n+1)(n+2)}$

$\dfrac{(n+1)(n+2)}{(n+1)(n+2)}+ \dfrac{(-1)^{n+2}(n+1)}{(n+1)(n+2)}$

$ 1 + \dfrac{(-1)^{(n+1)+1}}{(n+1)+1}$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
3
Views
2K
  • · Replies 68 ·
3
Replies
68
Views
12K
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K