MHB Proof with Induction 3/2-5/6+7/12-9/20+11/30-....

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Induction Proof
AI Thread Summary
The discussion focuses on proving a mathematical expression by induction, specifically the sum represented by the series involving alternating signs and odd numerators. The participants identify the general form of the numerators as odd numbers (2n + 1) and derive the denominators as a quadratic expression (n^2 + n). They utilize Newton's divided difference formula to analyze the sequence of denominators and confirm their pattern. The challenge arises at the induction step for n=k+1, where the proof requires careful manipulation of terms to establish the equality. The conversation highlights the complexities involved in mathematical induction and the need for clarity in deriving general expressions.
Yankel
Messages
390
Reaction score
0
Hello all,

In the attached picture there is an equation. I need to fill the general expression on the left hand side, and to prove by induction that the sum is equal to the expression in the right hand side.

I am not sure how to find the general expression. Can you kindly assist ?

Thank you !

View attachment 9516
 

Attachments

  • indu.PNG
    indu.PNG
    1.3 KB · Views: 139
Mathematics news on Phys.org
$\dfrac{(-1)^{n+1}(2n+1)}{n^2+n}$
 
The numerators are clearly the odd numbers so: 2n+ 1.

The denominators are a little harder! I would have used "Newton's "divided difference" formula: adding a first term of "0", the "first differences" are 2- 0= 2, 6- 2= 4, 12- 6= 6, 20- 12= 8, 30- 20= 10; the "second differences" are 4- 2= 2, 6- 4= 2, 8- 6= 2, 10- 8= 2. Those are all "2" so all further "differences" are 0. The denominators are given by the quadratic 0+ 2n+ (2/2)n(n-1)= n^2+ n.

Of course, since the +/- sign alternates we need -1 to a power. The first term, with n= 1, is positive so that can be either (-1)^{n+1} or (-1)^{n-1}.
 
I saw sequence of denominators, $2 ,6,12,20,30,...$, as

$(1\cdot 2), (2 \cdot 3), (3 \cdot 4), ( 4 \cdot 5),(5 \cdot 6), ... , [n \cdot (n+1)] , ...$
 
I tried proving this by induction using the general statement that skeeter wrote, but I couldn't do it.

I am stuck at the n=k+1 stage...
 
Last edited:
note $1 + \dfrac{(-1)^{n+1}}{n+1} = \dfrac{(n+1) + (-1)^{n+1}}{n+1}$
${\color{red}{\dfrac{3}{2} - \dfrac{5}{6} + \dfrac{7}{12} - \dfrac{9}{20} + ... + \dfrac{(-1)^{n+1}(2n+1)}{n(n+1)}}} + \dfrac{(-1)^{(n+1)+1}[2(n+1)+1]}{(n+1)[(n+1)+1]}$

${\color{red}\dfrac{(n+1) + (-1)^{n+1}}{n+1}} + \dfrac{(-1)^{n+2}(2n+3)}{(n+1)(n+2)}$

$\dfrac{(n+1)(n+2) + (-1)^{n+1}(n+2)}{(n+1)(n+2)} + \dfrac{(-1)^{n+2}(2n+3)}{(n+1)(n+2)}$

$\dfrac{(n+1)(n+2) + (-1)^{n+1}(n+2) - (-1)^{n+1}(2n+3) }{(n+1)(n+2)}$

$\dfrac{(n+1)(n+2) + (-1)^{n+1}[(n+2) - (2n+3)] }{(n+1)(n+2)}$

$\dfrac{(n+1)(n+2) + (-1)^{n+2}(n+1) }{(n+1)(n+2)}$

$\dfrac{(n+1)(n+2)}{(n+1)(n+2)}+ \dfrac{(-1)^{n+2}(n+1)}{(n+1)(n+2)}$

$ 1 + \dfrac{(-1)^{(n+1)+1}}{(n+1)+1}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top